by Keyword: Structural basis
Avalos-Padilla, Y, Georgiev, VN, Ewins, E, Robinson, T, Orozco, E, Lipowsky, R, Dimova, R, (2023). Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins Iscience 26, 105765
The endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate. Here, giant unilamellar vesicles, microfluidic technology, and micropipette aspiration are combined to continuously follow the ESCRT-III-mediated membrane remodeling on the single-vesicle level for the first time. With this approach, we identify different mechanisms by which a minimal set of three ESCRT-III proteins from Entamoeba histolytica reshape the membrane. These proteins modulate the membrane stiffness and spontaneous curvature to regulate bud size and generate intraluminal vesicles even in the absence of ATP. We demonstrate that the bud stability depends on the protein concentration and membrane tension. The approaches introduced here should open the road to diverse applications in synthetic biology for establishing artificial cells with several membrane compartments.© 2022 The Author(s).
JTD Keywords: bilayer, curvature, diffusion-coefficients, identification, membrane-scission, phase-diagram, reveals, sorting complex, structural basis, Biophysics, Biotechnology, Cell biology, Giant vesicles, Membranes
Beedle, AEM, Garcia-Manyes, S, (2023). The role of single-protein elasticity in mechanobiology Nature Reviews Materials 8, 10-24
Mechanical force modulates the conformation and function of individual proteins, and this underpins many mechanically driven cellular processes. This Review addresses single-molecule force spectroscopy experiments conducted on proteins with a known role in mechanosensing and mechanotransduction in eukaryotic cells.; In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. However, the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are not well understood in comparison. With the advent, development and refining of single-molecule nanomechanical techniques that enable the conformational dynamics of individual proteins under the effect of a calibrated force to be probed, we have begun to acquire a comprehensive knowledge of the diverse physicochemical principles that regulate the elasticity of single proteins. Here, we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of this prolific and burgeoning field.
JTD Keywords: Cadherin adhesion, Energy landscape, Extracellular-matrix protein, Focal adhesion kinase, Mechanical stability, Molecule force spectroscopy, Muscle protein, N2b element, Stranded-dna, Structural basis
Gomila, AMJ, Pérez-Mejías, G, Nin-Hill, A, Guerra-Castellano, A, Casas-Ferrer, L, Ortiz-Tescari, S, Díaz-Quintana, A, Samitier, J, Rovira, C, De la Rosa, MA, Díaz-Moreno, I, Gorostiza, P, Giannotti, MI, Lagunas, A, (2022). Phosphorylation disrupts long-distance electron transport in cytochrome c Nature Communications 13, 7100
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.© 2022. The Author(s).
JTD Keywords: apoptosis, binding, cardiolipin, complex, dynamics, force, respiration, structural basis, tyrosine phosphorylation, Histone chaperone activity
López-Ortiz, M, Zamora, RA, Giannotti, MI, Hu, C, Croce, R, Gorostiza, P, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, 2104366
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.
JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules
Avalos-Padilla, Y, Georgiev, VN, Dimova, R, (2021). ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase Biochimica Et Biophysica Acta-Biomembranes 1863, 183689
Membrane fission triggered by the endosomal sorting complex required for transport (ESCRT) is an important process observed in several pathogenic and non-pathogenic cellular events. From a synthetic-biology viewpoint, ESCRT proteins represent an interesting machinery for the construction of cell mimetic sub-compartments produced by fission. Since their discovery, the studies on ESCRT-III-mediated action, have mainly focused on protein dynamics, ignoring the role of lipid organization and membrane phase state. Recently, it has been suggested that membrane buds formed by the action of ESCRT-III are generated from transient microdomains in endosomal membranes. However, the interplay between membrane domain formation and ESCRT remodeling pathways has not been investigated. Here, giant unilamellar vesicles made of ternary lipid mixtures, either homogeneous in phase or exhibiting liquid-ordered/liquid-disordered phase coexistence, were employed as a model membrane system. These vesicles were incubated with purified recombinant ESCRT-III proteins from the parasite Entamoeba histolytica. In homogeneous membranes, we observe that EhVps32 can trigger domain formation while EhVps20 preferentially co-localizes in the liquid disordered phase. The addition of EhVps24 appears to induce the formation of intraluminal vesicles produced from the liquid-ordered phase. In phase separated membranes, the intraluminal vesicles are also generated from the liquid-ordered phase and presumably emerge from the phase boundary region. Our findings reinforce the hypothesis that ESCRT-mediated remodeling depends on the membrane phase state. Furthermore, the obtained results point to a potential synthetic biology approach for establishing eukaryotic mimics of artificial cells with microcompartments of specific membrane composition, which can also differ from that of the mother vesicle.
JTD Keywords: cell-membranes, coexistence, complex, escrt-iii, fission, guvs, lipid domains, lipid rafts, membrane fission, microcompartments, microscopy, phase separation, plasma-membrane, protein microarrays, structural basis, ternary mixtures, Escrt-iii, Giant unilamellar vesicles, Guvs, Lipid domains, Membrane fission, Microcompartments, Phase separation, Ternary mixtures