DONATE

Publications

by Keyword: Surface coating

Witzdam, Lena, White, Tom, Rodriguez-Emmenegger, Cesar, (2024). Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings Macromolecular Bioscience 24, 2400152

Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices. The activation of coagulation on the surface of blood-contacting medical devices often leads to thromboembolic complications. A concept for the next generation of hemocompatbile surfaces inspired by endothelium is proposed. This concept not only contribute to the fundamental understanding of hemocompatibility but also offer practical implications for the design and development of biomedical devices with enhanced biocompatibility and functionality. image

JTD Keywords: Antifouling coatings, Antifouling polymer brushes, Coagulation-factor-xii, Endothelium-inspired, Hemocompatibility, Hemocompatible surface coatings, Heparin-induced thrombocytopenia, Nitric-oxide release, Of-the-art, Peptide macrocycle inhibitor, Plasma contact system, Protein-adsorption, Self-assembled monolayers, Surface modificatio, Synthetic endotheliu


Rodriguez-Lejarraga, Paula, Martin-Iglesias, Sara, Moneo-Corcuera, Andrea, Colom, Adai, Redondo-Morata, Lorena, Giannotti, Marina I, Petrenko, Viktor, Monleon-Guinot, Irene, Mata, Manuel, Silvan, Unai, Lanceros-Mendez, Senentxu, (2024). The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition Acta Biomaterialia 184, 201-209

The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies. (c) 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

JTD Keywords: Adhesion, Atomic-force microscope, Biomaterials, Collagen, Collagen fibril, Electroactive material, Energ, Nanofibers, Osteogenic differentiation, Polyvinylidene fluoride, Pvdf, Stimuli, Surface charge, Surface coating, Systems


Mutreja, I, Lan, CX, Li, QS, Aparicio, C, (2023). Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants Pharmaceutics 15, 2418

Dental implant-associated infection is a clinical challenge which poses a significant healthcare and socio-economic burden. To overcome this issue, developing antimicrobial surfaces, including antimicrobial peptide coatings, has gained great attention. Different physical and chemical routes have been used to obtain these biofunctional coatings, which in turn might have a direct influence on their bioactivity and functionality. In this study, we present a silane-based, fast, and efficient chemoselective conjugation of antimicrobial peptides (Cys-GL13K) to coat titanium implant surfaces. Comprehensive surface analysis was performed to confirm the surface functionalization of as-prepared and mechanically challenged coatings. The antibacterial potency of the evaluated surfaces was confirmed against both Streptococcus gordonii and Streptococcus mutans, the primary colonizers and pathogens of dental surfaces, as demonstrated by reduced bacteria viability. Additionally, human dental pulp stem cells demonstrated long-term viability when cultured on Cys-GL13K-grafted titanium surfaces. Cell functionality and antimicrobial capability against multi-species need to be studied further; however, our results confirmed that the proposed chemistry for chemoselective peptide anchoring is a valid alternative to traditional site-unspecific anchoring methods and offers opportunities to modify varying biomaterial surfaces to form potent bioactive coatings with multiple functionalities to prevent infection.

JTD Keywords: biocompatibility, cytotoxicity, delivery, dental implants, prevention, release, stability, surface coating, titanium, zirconia, Antimicrobial peptide, Biocompatibility, Dental implants, Peri-implantitis, Surface coating, Titanium