by Keyword: accumulation

Rae, CD, Baur, JA, Borges, K, Dienel, G, Díaz-García, CM, Douglass, SR, Drew, K, Duarte, JMN, Duran, J, Kann, O, Kristian, T, Lee-Liu, D, Lindquist, BE, Mcnay, EC, Robinson, MB, Rothman, DL, Rowlands, BD, Ryan, TA, Scafidi, J, Scafidi, S, Shuttleworth, CW, Swanson, RA, Uruk, G, Vardjan, N, Zorec, R, Mckenna, MC, (2024). Brain energy metabolism: A roadmap for future research Journal Of Neurochemistry 168, 910-954

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research. This article details current knowledge and major unknowns in brain energy metabolism and lays out a roadmap for future research.image

JTD Keywords: Acetate, Acetyl-coa, Aerobic glycolysis, Atp-citrate lyase, Extracellular glutamate concentration, Fatty-acid transport, Glucose-metabolism, Glut4, In-vivo, Insulin, Lipid droplet accumulation, Nicotinamide adenine-dinucleotide, Noradrenaline, Obese zucker rats, Rat cerebral-cortex

Colom-Cadena, M, Davies, C, Sirisi, S, Lee, JE, Simzer, EM, Tzioras, M, Querol-Vilaseca, M, Sánchez-Aced, E, Chang, YY, Holt, K, McGeachan, RI, Rose, J, Tulloch, J, Wilkins, L, Smith, C, Andrian, T, Belbin, O, Pujals, S, Horrocks, MH, Lleó, A, Spires-Jones, TL, (2023). Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain Neuron 111, 2170-+

In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: accumulation, alpha-synuclein, array tomography, cognitive impairment, dendritic spines, mouse model, neurodegeneration, neurons, synapses, Alzheimer, Amyloid-beta, Synapse, Tau

Duran, J, (2023). Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders Cells 12, 722

Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5–10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.

JTD Keywords: abnormal glycogen, accumulation, aggregation, bodies, branching enzyme deficiency, corpora-amylacea, epilepsy, glycogen, lafora disease, mice, mouse model, neurodegeneration, neuroinflammation, progressive myoclonus epilepsy, ubiquitin ligase, Glycogen, Neuroinflammation, Polyglucosan body disease

López-Soldado, I, Guinovart, JJ, Duran, J, (2023). Active Glycogen Synthase in the Liver Prevents High-Fat Diet-Induced Glucose Intolerance, Decreases Food Intake, and Lowers Body Weight International Journal Of Molecular Sciences 24, 2574

Many lines of evidence demonstrate a correlation between liver glycogen content and food intake. We previously demonstrated that mice overexpressing protein targeting to glycogen (PTG) specifically in the liver—which have increased glycogen content in this organ—are protected from high-fat diet (HFD)-induced obesity by reduced food intake. However, the use of PTG to increase liver glycogen implies certain limitations. PTG stimulates glycogen synthesis but also inhibits the enzyme responsible for glycogen degradation. Furthermore, as PTG is a regulatory subunit of protein phosphatase 1 (PP1), which regulates many cellular functions, its overexpression could have side effects beyond the regulation of glycogen metabolism. Therefore, it is necessary to determine whether the direct activation of glycogen synthesis, without affecting its degradation or other cellular functions, has the same effects. To this end, we generated mice overexpressing a non-inactivatable form of glycogen synthase (GS) specifically in the liver (9A-MGSAlb mice). Control and 9a-MGSAlb mice were fed a standard diet (SD) or HFD for 16 weeks. Glucose tolerance and feeding behavior were analyzed. 9A-MGSAlb mice showed an increase in hepatic glycogen in fed and fasting conditions. When fed an HFD, these animals preserved their hepatic energy state, had a reduced food intake, and presented a lower body weight and fat mass than control animals, without changes in energy expenditure. Furthermore, 9A-MGSAlb animals showed improved glucose tolerance when fed an SD or HFD. Moreover, liver triacylglycerol levels that were increased after HFD feeding were lower in these mice. These results confirm that increased liver glycogen stores contribute to decreased appetite and improve glucose tolerance in mice fed an HFD. On the basis of our findings, strategies to preserve hepatic glycogen stores emerge as potential treatments for obesity and hyperglycemia.

JTD Keywords: accumulation, atp, attenuates obesity, expression, food intake, glucose, glycogen, glycogen synthase, high-fat diet, homeostasis, hyperglycemia, liver, mgat1, muscle, protein, ptg, Glycogen, Hepatic overexpression, Liver

Martens, KJA, Gobes, M, Archontakis, E, Brillas, RR, Zijlstra, N, Albertazzi, L, Hohlbein, J, (2022). Enabling Spectrally Resolved Single-Molecule Localization Microscopy at High Emitter Densities Nano Letters 22, 8618-8625

Single-molecule localization microscopy (SMLM) is a powerful super-resolution technique for elucidating structure and dynamics in the life- and material sciences. Simultaneously acquiring spectral information (spectrally resolved SMLM, sSMLM) has been hampered by several challenges: an increased complexity of the optical detection pathway, lower accessible emitter densities, and compromised spatio-spectral resolution. Here we present a single-component, low-cost implementation of sSMLM that addresses these challenges. Using a low-dispersion transmission grating positioned close to the image plane, the +1stdiffraction order is minimally elongated and is analyzed using existing single-molecule localization algorithms. The distance between the 0th and 1st order provides accurate information on the spectral properties of individual emitters. This method enables a 5-fold higher emitter density while discriminating between fluorophores whose peak emissions are less than 15 nm apart. Our approach can find widespread use in single-molecule applications that rely on distinguishing spectrally different fluorophores under low photon conditions.

JTD Keywords: cells, multicolor imaging, nanoscopy, particle tracking, point accumulation for imaging in nanoscale topography (paint), precision, single-molecule fo?rster resonance energy transfer (smfret), stochastic optical reconstruction microscopy (storm), Diffraction-limit, Multicolor imaging, Point accumulation for imaging in nanoscale topography (paint), Single-molecule förster resonance energy transfer (smfret), Single-molecule spectroscopy, Stochastic optical reconstruction microscopy (storm)

Varea, O, Guinovart, JJ, Duran, J, (2022). Malin restoration as proof of concept for gene therapy for Lafora disease Brain Commun 4, fcac168

Abstract Lafora disease is a fatal neurodegenerative childhood dementia caused by loss-of-function mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of abnormal glycogen aggregates known as Lafora bodies (LBs) in the brain and other tissues. These aggregates are responsible for the pathological features of the disease. As a monogenic disorder, Lafora disease is a good candidate for gene therapy-based approaches. However, most patients are diagnosed after the appearance of the first symptoms and thus when LBs are already present in the brain. In this context, it was not clear whether the restoration of a normal copy of the defective gene (either laforin or malin) would prove effective. Here we evaluated the effect of restoring malin in a malin-deficient mouse model of Lafora disease as a proof of concept for gene replacement therapy. To this end, we generated a malin-deficient mouse in which malin expression can be induced at a certain time. Our results reveal that malin restoration at an advanced stage of the disease arrests the accumulation of LBs in brain and muscle, induces the degradation of laforin and glycogen synthase bound to the aggregates, and ameliorates neuroinflammation. These results identify malin restoration as the first therapeutic strategy to show effectiveness when applied at advanced stages of Lafora disease.

JTD Keywords: accumulation, gene therapy, glycogen, lafora disease, neurodegeneration, neuroinflammation, neurons, targets, Carbohydrate-binding domain, Glycogen, Neuroinflammation

Pellegrini, P, Hervera, A, Varea, O, Brewer, MK, López-Soldado, I, Guitart, A, Aguilera, M, Prats, N, del Río, JA, Guinovart, JJ, Duran, J, (2022). Lack of p62 Impairs Glycogen Aggregation and Exacerbates Pathology in a Mouse Model of Myoclonic Epilepsy of Lafora Molecular Neurobiology 59, 1214-1229

Lafora disease (LD) is a fatal childhood-onset dementia characterized by the extensive accumulation of glycogen aggregates—the so-called Lafora Bodies (LBs)—in several organs. The accumulation of LBs in the brain underlies the neurological phenotype of the disease. LBs are composed of abnormal glycogen and various associated proteins, including p62, an autophagy adaptor that participates in the aggregation and clearance of misfolded proteins. To study the role of p62 in the formation of LBs and its participation in the pathology of LD, we generated a mouse model of the disease (malinKO) lacking p62. Deletion of p62 prevented LB accumulation in skeletal muscle and cardiac tissue. In the brain, the absence of p62 altered LB morphology and increased susceptibility to epilepsy. These results demonstrate that p62 participates in the formation of LBs and suggest that the sequestration of abnormal glycogen into LBs is a protective mechanism through which it reduces the deleterious consequences of its accumulation in the brain. © 2021, The Author(s).

JTD Keywords: accumulation, astrocytes, autophagy receptors, contributes, deficient mice, epilepsy, glycogen, lafora bodies, lafora disease, malin, metabolism, neurodegeneration, neuroinflammation, p62, polyglucosan bodies, temporal-lobe epilepsy, Epilepsy, Glycogen, Inclusion-body formation, Lafora bodies, Lafora disease, Malin, Neuroinflammation, P62