by Keyword: biodegradable fibers

Colombi S, Macor LP, Ortiz-Membrado L, Pérez-Amodio S, Jiménez-Piqué E, Engel E, Pérez-Madrigal MM, García-Torres J, Alemán C, (2023). Enzymatic Degradation of Polylactic Acid Fibers Supported on a Hydrogel for Sustained Release of Lactate Acs Applied Bio Materials 6, 3889-3901

The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of ×3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 ± 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.

JTD Keywords: biodegradable fibers, cardiac tissue regeneration, cell, drug-release, elastic-modulus, electrospinning, heart, nanoindentation, plasma treatment, proteinase, scaffold, stiffness, Alginate, Biodegradable fibers, Cardiac tissue regeneration, Electrospinning, Nanoindentation, Plasma treatment, Proteinase, Skeletal-muscle

Macor LP, Colombi S, Tamarit JL, Engel E, Pérez-Madrigal MM, García-Torres J, Alemán C, (2023). Immediate-sustained lactate release using alginate hydrogel assembled to proteinase K/polymer electrospun fibers International Journal Of Biological Macromolecules 238, 124117

This work proposes a microfibers-hydrogel assembled composite as delivery vehicle able to combine into a single system both burst and prolonged release of lactate. The prolonged release of lactate has been achieved by electrospinning a mixture of polylactic acid and proteinase K (26.0 mg of proteinase K and 0.99 g of PLA dissolved in 6 mL of 2:1 chloroform:acetone in the optimal case), which is a protease that catalyzes the degradation of polylactic acid into lactate. The degradation of microfibers into lactate reflects that proteinase K preserves its enzymatic activity even after the electrospinning process because of the mild operational conditions used. Besides, burst release is obtained from the lactate-loaded alginate hydrogel. The successful assembly between the lactate-loaded hydrogel and the polylactic acid/proteinase K fibers has been favored by applying a low-pressure (0.3 mbar at 300 W) oxygen plasma treatment, which transforms hydrophobic fibers into hydrophilic while the enzymatic activity is still maintained. The composite displays both fast (< 24 h) and sustained (> 10 days) lactate release, and allows the modulation of the release by adjusting either the amount of loaded lactate or the amount of active enzyme.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: biodegradable fibers, proteases, regeneration, repair, Alginate, Biodegradable fibers, Myocardial-infarction, Proteases