DONATE

Publications

by Keyword: cholesterol

Salgado, Blanca, Izquierdo, Beatriz, Zapata, Alba, Sastre, Isabel, Kristen, Henrike, Terreros, Julia, Mejias, Victor, Bullido, Maria J, Aldudo, Jesus, (2024). Cholesterol Modulation Attenuates the AD-like Phenotype Induced by Herpes Simplex Virus Type 1 Infection Biomolecules 14, 603

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (M beta CD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon M beta CD treatment. Moreover, M beta CD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. M beta CD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (A beta) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.

JTD Keywords: Alzheimer's disease, Arterial cells, Beta-amyloid, Cholesterol, Hsv-1, Hyperphosphorylated ta, Infection, Lysosomal alterations, Methyl-beta-cyclodextrin, Neuroblastoma cells, Neurodegeneration, Syste


Monteil, VM, Wright, SC, Dyczynski, M, Kellner, MJ, Appelberg, S, Platzer, SW, Ibrahim, A, Kwon, H, Pittarokoilis, I, Mirandola, M, Michlits, G, Devignot, S, Elder, E, Abdurahman, S, Bereczky, S, Bagci, B, Youhanna, S, Aastrup, T, Lauschke, VM, Salata, C, Elaldi, N, Weber, F, Monserrat, N, Hawman, DW, Feldmann, H, Horn, M, Penninger, JM, Mirazimi, A, (2024). Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells Nature Microbiology ,

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV. Laboratory and clinical strains of Crimean-Congo haemorrhagic fever virus use LDLR to bind and enter host cells in blood vessel organoids and mice. Infection can also occur through ApoE, possibly present on virus particles.

JTD Keywords: Cholesterol, Clathrin, Entry requires, Genetics, Localization, Protei, Receptor


Mohammed-Sadhakathullah, AHM, Paulo-Mirasol, S, Molina, BG, Torras, J, Armelin, E, (2024). PLA-PEG-Cholesterol biomimetic membrane for electrochemical sensing of antioxidants Electrochimica Acta 476, 143716

Polymeric membranes exhibit unique and modulate transport properties when they are properly functionalised, which make them ideal for ions transport, molecules separation and molecules interactions. The present work proposes the design and fabrication of nanostructured membranes, composed by biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG), incorporating a lipophilic molecule (cholesterol) covalently bonded, were especially designed to provide even more application opportunities in sensors field. Electrochemical studies, by means of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV), revealed important differences regarding the functionalised and non-functionalised PLA systems. PEGcholesterol building block units showed a clear affinity with ascorbic acid (vitamin C) and Trolox (R) (a watersoluble analogue of vitamin E), both hydrophilic in nature, with a limit of detection capacity of 8.12 mu M for AA and 3.53 mu M for AA and Trolox, respectively, in aqueous salt solution. The bioinspired polymer may be used to incorporate antioxidant property that allow the design of anti-stress biosensors, electrodes for the detection of vitamin C or vitamin E in biomedical nutrition programs, among other applications.

JTD Keywords: Antioxidant molecules, Antioxidants, Application programs, Ascorbic acid, Biomimetics, C (programming language), Capacity, Chemical detection, Cholesterol, Cyclic voltammetry, Electrochemical detection, Electrochemical impedance spectroscopy, Functional polymers, Functionalized, Lactic acid, Molecules, Nanomembranes, Poly ethylene glycols, Poly lactic acid, Poly(ethylene glycol), Poly(ethyleneglycol), Poly(lactic acid), Polyethylene glycols, Vitamin-e


Lolo, FN, Walani, N, Seemann, E, Zalvidea, D, Pavón, DM, Cojoc, G, Zamai, M, de Lesegno, CV, de Benito, FM, Sánchez-Alvarez, M, Uriarte, JJ, Echarri, A, Jiménez-Carretero, D, Escolano, JC, Sánchez, SA, Caiolfa, VR, Navajas, D, Trepat, X, Guck, J, Lamaze, C, Roca-Cusachs, P, Kessels, MM, Qualmann, B, Arroyo, M, Del Pozo, MA, (2023). Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system Nature Cell Biology 25, 120-133

In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.© 2022. The Author(s).

JTD Keywords: cavin, cell-migration, cholesterol, extracellular-matrix, nanoscale organization, particle-size, polarization, size distribution, tension, Plasma-membrane


Boloix, A, Feiner-Gracia, N, Kober, M, Repetto, J, Pascarella, R, Soriano, A, Masanas, M, Segovia, N, Vargas-Nadal, G, Merlo-Mas, J, Danino, D, Abutbul-Ionita, I, Foradada, L, Roma, J, Cordoba, A, Sala, S, Toledo, JS, Gallego, S, Veciana, J, Albertazzi, L, Segura, MF, Ventosa, N, (2022). Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics Small 18, 2101959

MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.

JTD Keywords: cancer therapy, mirnas delivery, nanocarriers, nanovesicles, neuroblastoma, pediatric cancer, quatsomes, Biodistribution, Cancer therapy, Cell engineering, Cells, Cholesterol, Controlled drug delivery, Diseases, Dna, Dysregulated ph, Lipoplex, Microrna delivery, Mirnas delivery, Nanocarriers, Nanoparticles, Nanovesicle, Nanovesicles, Neuroblastoma, Neuroblastomas, Pediatric cancer, Ph sensitive, Ph sensors, Quatsome, Quatsomes, Rna, Sirna, Sirna delivery, Sirnas delivery, Small interfering rna, Small rna, Targeted drug delivery, Tumors, Vesicles


Gumí-Audenis, Berta, Costa, Luca, Carlá, Francesco, Comin, Fabio, Sanz, Fausto, Giannotti, M. I., (2016). Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: Insights into the role of cholesterol and sphingolipids Membranes , 6, (4), 58

Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information

JTD Keywords: Atomic force microscopy, Force spectroscopy, Lipid membranes, Supported lipid bilayers, Nanomechanics, Cholesterol, Sphingolipids, Membrane structure, XR-AFM combination