by Keyword: distance
Romero, Daniel, Blanco-Almazán, Dolores, Groenendaal, Willemijn, Lijnen, Lien, Smeets, Christophe, Ruttens, David, Catthoor, Francky, Jané, Raimon, (2022). Predicting 6-minute walking test outcomes in patients with chronic obstructive pulmonary disease without physical performance measures Computer Methods And Programs In Biomedicine 225, 107020
Chronic obstructive pulmonary disease (COPD) requires a multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical performance measurements.Cardiopulmonary and clinical parameters were obtained from fifty COPD patients. These parameters were used as inputs of a Bayesian network (BN), which integrated three multivariate models including the 6-min walking distance (6MWD), the maximum HR (HRmax) after the walking, and the HR decay 3 min after (HRR3). The use of BN allows the assessment of the patients' status by predicting the 6MWT outcomes, but also inferring disease severity parameters based on actual patient's 6MWT outcomes.Firstly, the correlation obtained between the estimated and actual 6MWT measures was strong (R = 0.84, MAPE = 8.10% for HRmax) and moderate (R = 0.58, MAPE = 15.43% for 6MWD and R = 0.58, MAPE = 32.49% for HRR3), improving the classical methods to estimate 6MWD. Secondly, the classification of disease severity showed an accuracy of 78.3% using three severity groups, which increased up to 84.4% for two defined severity groups.We propose a powerful two-way assessment tool for COPD patients, capable of predicting 6MWT outcomes without the need for an actual walking exercise. This model-based tool opens the way to implement a continuous monitoring system for COPD patients at home and to provide more personalized care.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
JTD Keywords: 6mwt, bayesian networks, copd, distance, exercise capacity, physical capacity, reference equations, severity, survival, wearables, 6mwt, Heart-rate recovery, Wearables
López Ortiz, Manuel, Zamora, Ricardo A., Giannotti, Marina Inés, Hu, Chen, Croce, Roberta, Gorostiza, Pau, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, e2104366
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.
JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules
Vaca, R., Aranda, J., (2014). Approximating coupler curves using strip trees Advanced Numerical Methods II
11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) , CIMNE (Barcelona, Spain) , 1-2
For the mechanisms considered under the title linkages, coupler curve is the path traced by one of the point on the coupler link considered as an output of the mechanism which is joined to a fixed link. The equation of the coupler curve generated can be obtained solving a set of equations which describes distance constancy between all points of a mechanism and this coupler curve is the eliminant of these equations. The proposal to this work is to approximate coupler curves using strip trees.
JTD Keywords: Coupler curves, Strip tress, Distance geometry, Affine arithmetics, Planar linkages
Artés, Juan M., Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2011). Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy ACS Nano 5, (3), 2060-2066
We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using
an electrochemical tunneling microscope under bipotentiostatic control, we obtained current-distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.
JTD Keywords: Long-range electron transfer (LRET), Distance decay constant, Single-molecule electrochemistry, Redox enzyme, Metalloprotein, Blue copper protein, Azurin, Electrochemical scanning tunneling microscopy and spectroscopy, Nanoelectrodes, Debye length, Electrochemical charge screening