by Keyword: junctions

Zambarda C, Pérez González C, Schoenit A, Veits N, Schimmer C, Jung R, Ollech D, Christian J, Roca-Cusachs P, Trepat X, Cavalcanti-Adam EA, (2022). Epithelial cell cluster size affects force distribution in response to EGF-induced collective contractility European Journal Of Cell Biology 101, 151274

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.

JTD Keywords: actin, activation, actomyosin, adherens junctions, adhesion, e-cadherin, egf, maturation, mechanical regulation, micropatterning, migration, traction forces, transduction, transmission, Actomyosin, Adherens junctions, Collective contractility, Egf, Epidermal-growth-factor, Micropatterning, Traction forces

Nyga, Agata, Muñoz, Jose J., Dercksen, Suze, Fornabaio, Giulia, Uroz, Marina, Trepat, Xavier, Baum, Buzz, Matthews, Helen K., Conte, Vito, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467

Rodríguez-Pereira, Cristina, Lagunas, Anna, Casanellas, Ignasi, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, Blanco, Francisco J., Magalhães, Joana, (2020). RGD-dendrimer-poly(L-lactic) acid nanopatterned substrates for the early chondrogenesis of human mesenchymal stromal cells derived from osteoarthritic and healthy donors Materials 13, (10), 2247

Aiming to address a stable chondrogenesis derived from mesenchymal stromal cells (MSCs) to be applied in cartilage repair strategies at the onset of osteoarthritis (OA), we analyzed the effect of arginine–glycine–aspartate (RGD) density on cell condensation that occurs during the initial phase of chondrogenesis. For this, we seeded MSC-derived from OA and healthy (H) donors in RGD-dendrimer-poly(L-lactic) acid (PLLA) nanopatterned substrates (RGD concentrations of 4 × 10−9, 10−8, 2.5 × 10−8, and 10−2 w/w), during three days and compared to a cell pellet conventional three-dimensional culture system. Molecular gene expression (collagens type-I and II–COL1A1 and COL2A1, tenascin-TNC, sex determining region Y-box9-SOX9, and gap junction protein alpha 1–GJA1) was determined as well as the cell aggregates and pellet size, collagen type-II and connexin 43 proteins synthesis. This study showed that RGD-tailored first generation dendrimer (RGD-Cys-D1) PLLA nanopatterned substrates supported the formation of pre-chondrogenic condensates from OA- and H-derived human bone marrow-MSCs with enhanced chondrogenesis regarding the cell pellet conventional system (presence of collagen type-II and connexin 43, both at the gene and protein level). A RGD-density dependent trend was observed for aggregates size, in concordance with previous studies. Moreover, the nanopatterns’ had a higher effect on OA-derived MSC morphology, leading to the formation of bigger and more compact aggregates with improved expression of early chondrogenic markers.

JTD Keywords: Cell condensation, Gap junctions, RGD-density, Chondrogenic differentiation, Osteoarthritis

Neri, L., Lasa, M., Elosegui-Artola, A., D'Avola, D., Carte, B., Gazquez, C., Alve, S., Roca-Cusachs, P., Iñarrairaegui, M., Herrero, J., Prieto, J., Sangro, B., Aldabe, R., (2017). NatB-mediated protein N-α-terminal acetylation is a potential therapeutic target in hepatocellular carcinoma Oncotarget 8, (25), 40967-40981

The identification of new targets for systemic therapy of hepatocellular carcinoma (HCC) is an urgent medical need. Recently, we showed that hNatB catalyzes the N-α-terminal acetylation of 15% of the human proteome and that this action is necessary for proper actin cytoskeleton structure and function. In tumors, cytoskeletal changes influence motility, invasion, survival, cell growth and tumor progression, making the cytoskeleton a very attractive antitumor target. Here, we show that hNatB subunits are upregulated in in over 59% HCC tumors compared to non-tumor tissue and that this upregulation is associated with microscopic vascular invasion. We found that hNatB silencing blocks proliferation and tumor formation in HCC cell lines in association with hampered DNA synthesis and impaired progression through the S and the G2/M phases. Growth inhibition is mediated by the degradation of two hNatB substrates, tropomyosin and CDK2, which occurs when these proteins lack N-α-terminal acetylation. In addition, hNatB inhibition disrupts the actin cytoskeleton, focal adhesions and tight/adherens junctions, abrogating two proliferative signaling pathways, Hippo/YAP and ERK1/2. Therefore, inhibition of NatB activity represents an interesting new approach to treating HCC by blocking cell proliferation and disrupting actin cytoskeleton function.

JTD Keywords: CDK2, Cell cycle arrest, Cell-cell junctions, Focal adhesions, Tropomyosin

Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., Sanz, F., Hihath, J., Ruiz, E., Díez-Pérez, I., (2016). Large conductance switching in a single-molecule device through room temperature spin-dependent transport Nano Letters 16, (1), 218-226

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover FeII complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

JTD Keywords: Density functional calculations, Magnetoresistance, Single-molecule junctions, Spin orbit coupling, Spin-crossover complexes, Spinterface, STM break-junction

Pla-Vilanova, P., Aragonès, A. C., Ciampi, S., Sanz, F., Darwish, N., Diez-Perez, I., (2015). The spontaneous formation of single-molecule junctions via terminal alkynes Nanotechnology 26, 381001

Herein, we report the spontaneous formation of single-molecule junctions via terminal alkyne contact groups. Self-assembled monolayers that form spontaneously from diluted solutions of 1, 4-diethynylbenzene (DEB) were used to build single-molecule contacts and assessed using the scanning tunneling microscopy-break junction technique (STM-BJ). The STM-BJ technique in both its dynamic and static approaches was used to characterize the lifetime (stability) and the conductivity of a single-DEB wire. It is demonstrated that single-molecule junctions form spontaneously with terminal alkynes and require no electrochemical control or chemical deprotonation. The alkyne anchoring group was compared against typical contact groups exploited in single-molecule studies, i.e. amine (benzenediamine) and thiol (benzendithiol) contact groups. The alkyne contact showed a conductance magnitude comparable to that observed with amine and thiol groups. The lifetime of the junctions formed from alkynes were only slightly less than that of thiols and greater than that observed for amines. These findings are important as (a) they extend the repertoire of chemical contacts used in single-molecule measurements to 1-alkynes, which are synthetically accessible and stable and (b) alkynes have a remarkable affinity toward silicon surfaces, hence opening the door for the study of single-molecule transport on a semiconducting electronic platform.

JTD Keywords: Ferrocene, Molecular electronics, Single-molecule electronics, Single-molecule junctions, Singlemolecule contacts, STM-break junction, Terminal alkyne

Artés, Juan M., López-Martínez, Montserrat, Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2014). Conductance switching in single wired redox proteins Small 10, (13), 2537-2541

Switching events in the current flowing through individual redox proteins, (azurin) spontaneously wired between two electrodes, are studied using an electrochemical scanning tunneling microscope (ECSTM). These switching events in the current–time trace are characterized using conductance histograms, and reflect the intrinsic redox thermodynamic dispersion in the azurin population. This conductance switching may pose limitations to miniaturizing redox protein-based devices.

JTD Keywords: Bioelectronics, Protein transistors, Molecular junctions, Switches, STM

Guo, S., Artés, J. M., Díez-Pérez, I., (2013). Electrochemically-gated single-molecule electrical devices Electrochimica Acta 63rd Annual Meeting of the International Society of Electrochemistry , Elsevier (Prague, Czech Republic) 110, 741-753

In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour.

JTD Keywords: Electrochemical gate, Electrochemical switches, NDR, Single-molecule junctions, Unipolar/ambipolar FETs