by Keyword: interface
Lodoso-Torrecilla, Irene, Konka, Joanna, Kreuzer, Martin, Jimenez-Pique, Emilio, Espanol, Montserrat, Ginebra, Maria-Pau, (2024). Quality assessment of regenerated bone in intraosseous and intramuscular scaffolds by spectroscopy and nanoindentation Biomaterials Advances 164, 213982
The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.
JTD Keywords: Atr-ftir, Bone regeneration, Calcium-phosphate, Ectopic implantation, Implant interface, In-vivo, Indentation, Mechanical-properties, Micromechanical properties, Nanoindentation, Orthotropic implantation, Raman spectroscop, Raman-spectroscopy, Strengt, Substitutes
Cicconofri, Giancarlo, Blanco, Pau, Vilanova, Guillermo, Saez, Pablo, Arroyo, Marino, (2024). Active interfacial degradation/deposition of an elastic matrix by a fluid inclusion: Theory and pattern formation Journal Of The Mechanics And Physics Of Solids 191, 105773
During collective invasion in 3D, cohesive cellular tissues migrate within a fibrous extracellular matrix (ECM). This process requires significant remodeling of the ECM by cells, notably proteolysis at the cell-ECM interface by specialized molecules. Motivated by this problem, we develop a theoretical framework to study the dynamics of a fluid inclusion (modeling the cellular tissue) embedded in an elastic matrix (the ECM), which undergoes surface degradation/deposition. To account for the active nature of this process, we develop a continuum theory based on irreversible thermodynamics, leading to a kinetic relation for the degradation front that locally resembles the force-velocity relation of a molecular motor. We further study the effect of mechanotransduction on the stability of the cell-ECM interface, finding a variety of self- organized dynamical patterns of collective invasion. Our work identifies ECM proteolysis as an active process possibly driving the self-organization of cellular tissues.
JTD Keywords: Accretion, Accretion and erosion, Active matter, Cell-migration, Collective invasion, Growth, Insight, Irreversible thermodynamics, Mechanics, Model, Morphogenesis, Moving non-material interfaces, Pattern formatio, Proteolysis, Surface, Surface growth
Arnau, Marc, Sans, Jordi, Tamarit, Josep Lluis, Romanini, Michela, Turon, Pau, Aleman, Carlos, (2024). Unraveling Thermal Depolarization Phenomena in Biphasic Polarized Calcium Phosphate Catalyst Advanced Materials Interfaces , 2400422
Permanently polarized biphasic calcium phosphate composed of hydroxyapatite and brushite (pp-HAp/Bru), which is prepared by applying the thermally stimulated polarization treatment to calcined HAp, is used as a sustainable catalyst to transform CO2 into value-added products. In this work, the stability of pp-HAp/Bru is studied from structural, electrical, and catalytic perspectives, applying a thermal depolarization process with temperatures (T-d) ranging from 200 to 1000 degrees C. Results show that the Bru phase is not stable when T-d = 600 degrees C. Besides, the electrical resistance and capacitance of the pp-HAp/Bru increase with T-d, evidencing the progressive electrical depolarization of the material. Thermal depolarization also influences the specific orientation of the OH- ions, which is partially lost (approximate to 50%). All such changes affect the catalytic efficiency of pp-HAp/Bru, which is proven using a reaction that transforms CO2 gas into acetic acid and formic acid. Results show that the total reaction yield linearly decreases with increasing T-d. Based on such observations, a simple process is designed that allows the reconstitution of the structure and restores the activity of such green catalysts.
JTD Keywords: Co-2 fixation, Electrical depolarization, Green catalysts, Interface stability, Thermal depolarizatio
Lanzalaco, S, Sánchez, X, Alemán, C, Weis, C, Traeger, KA, Turon, P, Armelin, E, (2023). Thermo/Pressure-Sensitive Self-Fixation Surgical Meshes: The Role of Adhesive Hydrogels in Interface Attachment Acs Applied Polymer Materials 5, 9898-9908
Herein, an innovative self- and pressure-adhesive biomedical implant was developed. Tissue adhesion was achieved with a thermosensitive hydrogel based on poly-(N-isopropylacrylamide-co-acrylamide), PNIPAAm-co-PAAm, grafted on a substrate composed of knitted fibers of isotactic polypropylene mesh (PP), used as surgical mesh implants. The in vitro studies, carried out with porcine skin, showed an important role of the inclusion of acrylamide-based comonomer (AAm) in the thermosensitive hydrogel PNIPAAm matrix. The bonding, peeling, and shearing energies obtained for PNIPAAm-co-PAAm increased exponentially up to three, two, and six times, respectively, compared to the gel without AAm. The physisorption and mechanical interlocking mechanisms are responsible for such improvement due to the simultaneous creation of hydrophobic and hydrophilic interactions of the thermosensitive hydrogel at temperatures higher than the lower critical solution temperature (LCST), with the porcine tissue. In addition, our bioadhesives present excellent interfacial toughness (similar to 100 J/m(2)) when compared to commercial bioglues (similar to 50 J/m(2) or lower). The results obtained represent a very promising adhesive material that is extensible to other medical devices that require atraumatic fixation to avoid chronic pain related to other fixation approaches.
JTD Keywords: Bioadhesive, Complications, Hernia-repair, Interface adhesion, Mechanicalinterlocking, Physisorption, Poly(n-isopropylacrylamide), Polypropylene mesh, Surgicalmesh, Thermosensitive hydrogel
Munoz-Galan, H, Aleman, C, Perez-Madrigal, MM, (2023). Beyond biology: alternative uses of cantilever-based technologies Lab On A Chip 23, 1128-1150
Ugarte-Orozco, MJ, Lopez-Munoz, GA, Antonio-Perez, A, Esquivel-Ortiz, KM, Ramon-Azcon, J, (2023). High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing Current Research In Biotechnology 5, 100119
In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturiza-tion, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the bioin-terface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecog-nition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip.
JTD Keywords: Biointerfaces, Biosensing, Biosensors, Cell culture monitoring, Metaplasmonic, Nanoplasmonic, Organ-on-chip, Point-of-care
Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Polarized Hydroxyapatite: New Insights and Future Perspectives Through Systematic Electrical Characterization at the Interface Advanced Materials Interfaces 9, 2101631
JTD Keywords: amino-acids, catalysis, dopant-free hydroxyapatite, electrical properties, electrophotosynthesis, nitrogen, thermally-stimulated polarization, Advanced materials, Biocompatibility, Biomedical applications, Brushite, Doped hydroxyapatites, Electric voltage, Electrical characterization, Electrochemical impedance spectroscopy, Equivalent circuits, Future perspectives, Highest temperature, Hydroxyapatite, Interfaces (materials), Material interfaces, Medical applications, Polarization, Polarization conditions, Surface-charges, Technological applications
Nyga, A, Munoz, JJ, Dercksen, S, Fornabaio, G, Uroz, M, Trepat, X, Baum, B, Matthews, HK, Conte, V, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467
[Figure: see text].
JTD Keywords: activation, cell extrusion, contraction, drives, homeostasis, interface, junctions, kinase, tension, Adhesion, Article, Cell membranes, Chemical activation, Cytology, E-cadherin, Epithelial monolayers, Epithelium, Homoeostasis, Human, Mechanical instabilities, Monolayers, Morphological transformations, Morphology, Normal tissue, Oncogenics, Soft substrates, Substrates, Tissue, Tissue mechanics, Tissue morphology, Tumor development
Guix, M, Mestre, R, Patiño, T, De Corato, M, Fuentes, J, Zarpellon, G, Sánchez, S, (2021). Biohybrid soft robots with self-stimulating skeletons Science Robotics 6, eabe7577
Bioinspired hybrid soft robots that combine living and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e., swimmers, crawlers, and walkers). The integration of biological components offers unique characteristics that artificial materials cannot precisely replicate, such as adaptability and response to external stimuli. Here, we present a skeletal muscle–based swimming biobot with a three-dimensional (3D)–printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: directional swimming when the biobot is at the liquid-air interface and coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 hertz (800 micrometers per second, 3 body lengths per second). This skeletal muscle–based biohybrid swimmer attains speeds comparable with those of cardiac-based biohybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms. Copyright © 2021 The Authors, some rights reserved;
JTD Keywords: actuators, design, fabrication, mechanics, mems, myotubes, platform, tissue, 3d printers, Agricultural robots, Biological components, Biomimetic processes, Electrical actuation, Geometrical stiffness, Intelligent robots, Liquefied gases, Liquid-air interface, Mechanical integrity, Mechanical stimulation, Muscle, Muscle contractions, Phase interfaces, Robotics, Serpentine, Springs (components), Threedimensional (3-d)
Moreira, VB, Puiggalí-Jou, A, Jiménez-Piqué, E, Alemán, C, Meneguzzi, A, Armelin, E, (2021). Green nanocoatings based on the deposition of zirconium oxide: The role of the substrate Materials (Basel) 14, 1043
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. Herein, the influence of the substrate in the formation of zirconium oxide monolayer, from an aqueous hexafluorozirconic acid solution, by chemical conversion and by electro-assisted deposi-tion, has been approached. The nanoscale dimensions of the ZrO2 film is affected by the substrate nature and roughness. This study evidenced that the mechanism of Zr-EAD is dependent on the potential applied and on the substrate composition, whereas conversion coating is uniquely dependent on the adsorption reaction time. The zirconium oxide based nanofilms were more homogenous in AA2024 substrates if compared to pure Al grade (AA1100). It was justified by the high content of Cu alloying element present in the grain boundaries of the latter. Such intermetallic active sites favor the obtaining of ZrO2 films, as demonstrated by XPS and AFM results. From a mechanistic point of view, the electrochemical reactions take place simultaneously with the conventional chemical conversion process driven by ions diffusion. Such findings will bring new perspectives for the generation of controlled oxide coatings in modified electrodes used, as for example, in the construction of battery cells; in automotive and in aerospace industries, to replace micrometric layers of zinc phosphate by light-weight zirconium oxide nanometric ones. This study is particularly addressed for the reduction of industrial waste by applying green bath solutions without the need of auxiliary compounds and using lightweight ceramic materials.
JTD Keywords: aluminum alloys, conversion coating, electro-assisted deposition, metal-oxide interface, nanocoating, zirconium oxide, Aluminum alloys, Conversion coating, Electro-assisted deposition, Metal-oxide interface, Nanocoating, Zirconium oxide
Convertino, D., Fabbri, F., Mishra, N., Mainardi, M., Cappello, V., Testa, G., Capsoni, S., Albertazzi, L., Luin, S., Marchetti, L., Coletti, C., (2020). Graphene promotes axon elongation through local stall of nerve growth factor signaling endosomes Nano Letters 20, (5), 3633-3641
Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.
JTD Keywords: Axon elongation, Graphene, Material-neuron interface, Membrane-associated periodic skeleton, Nerve growth factor retrograde transport, Peripheral dorsal root ganglion neuron
Martinez-Hernandez, Uriel, Vouloutsi, Vasiliki, Mura, Anna, Mangan, Michael, Asada, Minoru, Prescott, T. J., Verschure, P., (2019). Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019, Nara, Japan, July 9–12, 2019, Proceedings , Springer, Cham (Lausanne, Switzerland) 11556, 1-384
This book constitutes the proceedings of the 8th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2019, held in Nara, Japan, in July 2019. The 26 full and 16 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.
JTD Keywords: Artificial intelligence, Biomimetics, Computer architecture, Human robot interaction, Human-Computer Interaction (HCI), Humanoid robot, Image processing, Learning algorithms, Mobile robots, Multipurpose robots, Neural networks, Quadruped robots, Reinforcement learning, Robot learning, Robotics, Robots, Sensor, Sensors, Swarm robotics, User interfaces
Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., Sanz, F., Hihath, J., Ruiz, E., Díez-Pérez, I., (2016). Large conductance switching in a single-molecule device through room temperature spin-dependent transport Nano Letters 16, (1), 218-226
Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover FeII complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.
JTD Keywords: Density functional calculations, Magnetoresistance, Single-molecule junctions, Spin orbit coupling, Spin-crossover complexes, Spinterface, STM break-junction
Morales, R., Badesa, F. J., Garcia-Aracil, N., Aranda, J., Casals, A., (2015). Autoadaptive neurorehabilitation robotic system assessment with a post-stroke patient Revista Iberoamericana de Automatica e Informatica Industrial , 12, (1), 92-98
This paper presents a new rehabilitation system that is able to adapt its performance to patient's psychophysiological state during the execution of robotic rehabilitation tasks. Using this approach, the motivation and participation of the patient during rehabilitation activity can be maximized. In this paper, the results of the study with healthy subjects presented in (Badesa et al., 2014b) have been extended for using them with patients who have suffered a stroke. In the first part of the article, the different components of the adaptive system are exposed, as well as a comparison of different machine learning techniques to classify the patient's psychophysiological state between three possible states: stressed, average excitation level and relaxed are presented. Finally, the results of the auto-adaptive system which modifies the behavior of the rehabilitation robot and virtual task in function of measured physiological signals are shown for a patient in the chronic phase of stroke.
JTD Keywords: Physiological state multimodal interfaces rehabilitation robotics control
Torrent-Burgués, J., Cea, P., Giner, I., Guaus, E., (2014). Characterization of Langmuir and Langmuir-Blodgett films of an octasubstituted zinc phthalocyanine Thin Solid Films , 556, 485-494
In this work we report the fabrication of Langmuir and Langmuir-Blodgett (LB) films of a substituted ZnPc (octakis(oxyoctyl)phthalocyanine of zinc), and their characterization by means of several techniques. These characterization techniques include surface pressure (π-A) and surface potential (ΔV-A) isotherms as well as UV-vis Reflection spectroscopy and Brewster Angle Microscopy (BAM) for the films at the air-water interface together with UV-vis absorption and IR spectroscopies and Atomic Force Microscopy (AFM) for the LB films. The π-A and ΔV-A isotherms and BAM images indicate a phase transition at a surface pressure of ca. 9 mN/m and a multilayer formation at surface pressures around 19-20 mN/m; at a surface pressure around 27 mN/m a disordered collapse of the film occurs. In addition, AFM images of LB films at π = 10 mN/m and π = 20 mN/m show a monomolecular and a multilayered film, respectively. The comparison of the UV-vis spectrum of ZnPc in solution, the reflection spectra of the Langmuir films and UV-vis spectra of LB films reveals a significant reduction in the Q band intensity for the films, indicative of an organization of ZnPc in the Langmuir and LB films versus the random distribution in solution. The UV-vis Reflection spectra are also consistent with multilayer formation at surface pressures around 19-20 mN/m. The relative intensities of the IR spectrum bands change from the KBr pellet to the LB film which is also attributable to orientation effects in the film. Cyclic voltammetric experiments of LB films incorporating the ZnPc derivative show peaks that can be correlated with redox processes occurring in the phthalocyanine ring. A small but significant influence of the surface pressure and the number of deposited layers in the electrochemical behaviour is observed. The electrochemical response of cast films exhibits some differences with respect to that of LB films which have been attributed to their different molecular organizations.
JTD Keywords: Atomic Force Microscopy, Electrochemistry, Langmuir-Blodgett, Multilayers, Optical spectroscopy techniques, Zinc phthalocyanine, Atomic force microscopy, Electrochemistry, Interfaces (materials), Isotherms, Multilayers, Nitrogen compounds, Optical multilayers, Organic polymers, Zinc compounds, Brewster angle microscopy, Characterization techniques, Electrochemical behaviour, Langmuir and langmuir-blodgett films, Langmuir-blodgett, Optical spectroscopy techniques, UV-Vis Reflection Spectroscopy, Zinc phthalocyanines, Langmuir Blodgett films
Vinagre, M., Aranda, J., Casals, A., (2014). An interactive robotic system for human assistance in domestic environments Computers Helping People with Special Needs (ed. Miesenberger, K., Fels, D., Archambault, D., Pe, Zagler), Springer International Publishing 8548, 152-155
This work introduces an interactive robotic system for assistance, conceived to tackle some of the challenges that domestic environments impose. The system is organized into a network of heterogeneous components that share both physical and logical functions to perform complex tasks. It consists of several robots for object manipulation, an advanced vision system that supplies in-formation about objects in the scene and human activity, and a spatial augmented reality interface that constitutes a comfortable means for interacting with the system. A first analysis based on users' experiences confirms the importance of having a friendly user interface. The inclusion of context awareness from visual perception enriches this interface allowing the robotic system to become a flexible and proactive assistant.
JTD Keywords: Accessibility, Activity Recognition, Ambient Intelligence, Human-Robot Interaction, Robot Assistance, Augmented reality, Complex networks, Computer vision, User interfaces, Accessibility, Activity recognition, Ambient intelligence, Domestic environments, Heterogeneous component, Interactive robotics, Robot assistance, Spatial augmented realities, Human assistance, Robotics
Casals, Alicia, Fedele, Pasquale, Marek, Tadeusz, Molfino, Rezia, Muscolo, GiovanniGerardo, Recchiuto, CarmineTommaso, (2014). A robotic suit controlled by the human brain for people suffering from quadriplegia Lecture Notes in Computer Science Towards Autonomous Robotic Systems (ed. Natraj, Ashutosh, Cameron, Stephen, Melhuish, Chris, Witkowski, Mark), Springer Berlin Heidelberg , 294-295
The authors present an introductory work for the implementation of an international cooperative project aimed at designing, developing and validating a new generation of ergonomic robotic suits, wearable by the users and controlled by the human brain. The aim of the proposers is to allow the motion of people affected by paralysis or with reduced motor abilities. Therefore, the project will focus on the fusion between neuroergonomics and robotics, also by means of brain-machine interfaces. Breakthrough solutions will compose the advanced robotic suit, endowed with soft structures to increment safety and human comfort, and with an advanced real-time control that takes into account the interaction with the human body.
JTD Keywords: Neuroergonomics, Brain computer interfaces, Robotics, Robotic suits, Compliant actuators, Exoskeleton, EEG, Dynamic balance control
Diez-Perez, Ismael, Hihath, Joshua, Hines, Thomas, Wang, Zhong-Sheng, Zhou, Gang, Mullen, Klaus, Tao, Nongjian, (2011). Controlling single-molecule conductance through lateral coupling of [pi] orbitals Nature Nanotechnology , 6, (4), 226-231
In recent years, various single-molecule electronic components have been demonstrated(1). However, it remains difficult to predict accurately the conductance of a single molecule and to control the lateral coupling between the pi orbitals of the molecule and the orbitals of the electrodes attached to it. This lateral coupling is well known to cause broadening and shifting of the energy levels of the molecule; this, in turn, is expected to greatly modify the conductance of an electrodemolecule- electrode junction(2-6). Here, we demonstrate a new method, based on lateral coupling, to mechanically and reversibly control the conductance of a single-molecule junction by mechanically modulating the angle between a single pentaphenylene molecule bridged between two metal electrodes. Changing the angle of the molecule from a highly tilted state to an orientation nearly perpendicular to the electrodes changes the conductance by an order of magnitude, which is in qualitative agreement with theoretical models of molecular pi-orbital coupling to a metal electrode. The lateral coupling is also directly measured by applying a fast mechanical perturbation in the horizontal plane, thus ruling out changes in the contact geometry or molecular conformation as the source for the conductance change.
JTD Keywords: Junction conductance, Electron-transport, Interface, Dependence, Mechanism, Length
Gugutkov, Dencho, Gonzalez-Garcia, Cristina, Altankov, George, Salmeron-Sanchez, Manuel, (2011). Fibrinogen organization at the cell-material interface directs endothelial cell behavior Journal of Bioactive and Compatible Polymers , 26, (4), 375-387
Fibrinogen (FG) adsorption on surfaces with controlled fraction of -OH groups was investigated with AFM and correlated to the initial interaction of primary endothelial cells (HUVEC). The -OH content was tailored making use of a family of copolymers consisting of ethyl acrylate (EA) and hydroxyl ethyl acrylate (HEA) in different ratios. The supramolecular distribution of FG changed from an organized network-like structure on the most hydrophobic surface (-OH(0)) to dispersed molecular aggregate one as the fraction of -OH groups increases, indicating a different conformation by the adsorbed protein. The best cellular interaction was observed on the most hydrophobic (-OH(0)) surface where FG assembled in a fibrin-like appearance in the absence of any thrombin. Likewise, focal adhesion formation and actin cytoskeleton development was poorer as the fraction of hydroxy groups on the surface was increased. The biological activity of the surface-induced FG network to provide 3D cues in a potential tissue engineered scaffold, making use of electrospun PEA fibers (-OH(0)), seeded with human umbilical vein endothelial cells was investigated. The FG assembled on the polymer fibers gave rise to a biologically active network able to direct cell orientation along the fibers (random or aligned), promote cytoskeleton organization and focal adhesion formation.
JTD Keywords: Fibrinogen, Cell-material interactions, HUVEC, Electrospun fibers, Fibrinogen organization, Cell-material interface, Endothelial cell behavior, Ethyl acrylate, Hydroxyl ethyl acrylate
Lacroix, Damien, Ramirez Patino, Juan Fernando, (2011). Finite Element Analysis of Donning Procedure of a Prosthetic Transfemoral Socket Annals of Biomedical Engineering , 39, (12), 2972-2983
Lower limb amputation is a severe psychological and physical event in a patient. A prosthetic solution can be provided but should respond to a patient-specific need to accommodate for the geometrical and biomechanical specificities. A new approach to calculate the stress-strain state at the interaction between the socket and the stump of five transfemoral amputees is presented. In this study the socket donning procedure is modeled using an explicit finite element method based on the patient-specific geometry obtained from CT and laser scan data. Over stumps the mean maximum pressure is 4 kPa (SD 1.7) and the mean maximum shear stresses are 1.4 kPa (SD 0.6) and 0.6 kPa (SD 0.3) in longitudinal and circumferential directions, respectively. Locations of the maximum values are according to pressure zones at the sockets. The stress-strain states obtained in this study can be considered more reliable than others, since there are normal and tangential stresses associated to the socket donning procedure.
JTD Keywords: Trans-tibial prosthesis, Knee residual limb, Pressure distribution, Transtibial amputees, Stump/socket interface, Mechanical conditions, Load-transfer, Soft-tissues, Stresses, Contact
Casals, A., (2010). Human – Robot cooperation techniques in surgery ICINCO 2010 7th International conference on Informatics in Control, Automation and Robotics , Springer (Madeira, Portugal) , 1-4
The growth of robotics in the surgical field is consequence of the progress in all its related areas, as: perception, instrumentation, actuators, materials, computers, and so. However, the lack of intelligence of current robots makes teleoperation an essential means for robotizing the Operating Room (OR), helping in the improvement of surgical procedures and making the best of the human-robot couple, as it already happens in other robotic application fields. The assistance a teleoperated system can provide is the result of the control strategies that can combine the high performance of computers with the surgeon knowledge, expertise and will. In this lecture, an overview of teleoperation techniques and operating modes suitable in the OR is presented, considering different cooperation levels. A special emphasis will be put on the selection of the most adequate interfaces currently available, able to operate in such quite special environments.
JTD Keywords: Medical Robotics, Human Robot Interaction, Human Machine Interfaces, Surgical Robots
Andonovski, B., Ponsa, P., Casals, A., (2010). Towards the development of a haptics guideline in human-robot systems 3rd International Conference on Human System Interactions (HSI) 3rd International Conference on Human System Interactions (HSI) (ed. Pardela, T.), IEEE (Rzeszow, Poland) , 380-387
The main goal of this work is to propose a haptics guideline in human-robot systems focused on the relationship between the human and robot task, the use of a physical interface and the object to manipulate. With this aim, this guideline presents two main parts: a set of heuristic indicators and a qualitative evaluation. In order to assess its ergonomic validation, an application over a well known haptics interface is presented. The final goal of this work is the study of possible applications in regular laboratory conditions in order to improve the design and use of human-robot haptic interfaces in telerobotics applications.
JTD Keywords: Haptic interface design, Human-robot interaction, Surgical applications, Teleoperation
Martinez, E., Engel, E., Lopez-Iglesias, C., Mills, C. A., Planell, J. A., Samitier, J., (2008). Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: A study of cell-substrate interactions Micron , 39, (2), 111-116
Topographic micro and nanostructures can play an interesting role in cell behaviour when cells are cultured on these kinds of patterned substrates. It is especially relevant to investigate the influence of the nanometric dimensions topographic features on cell morphology, proliferation, migration and differentiation. To this end, some of the most recent fabrication technologies, developed for the microelectronics industry, can be used to produce well-defined micro and nanopatterns on biocompatible polymer substrates. In this work, osteoblast-like cells are grown on poly(methyl methacrylate) substrates patterned by nanoimprint lithography techniques. Examination of the cell-substrate interface can reveal important details about the cell morphology and the distribution of the focal contacts on the substrate surface. For this purpose, a combination of focused ion beam milling and scanning electron microscopy techniques has been used to image the cell-substrate interface. This technique, if applied to samples prepared by freeze-drying methods, allows high-resolution imaging of cross-sections through the cell and the substrate, where the interactions between the nanopatterned substrate, the cell and the extracellular matrix, which are normally hidden by the bulk of the cell, can be studied.
JTD Keywords: Electron microscopy, Interface, Nanotopography, Osteoblast, Adhesion molecule, Cell morphology
Diez, Pablo F., Laciar, Eric, Mut, Vicente, Avila, Enrique, Torres, Abel, (2008). A comparative study of the performance of different spectral estimation methods for classification of mental tasks IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 1155-1158
In this paper we compare three different spectral estimation techniques for the classification of mental tasks. These techniques are the standard periodogram, the Welch periodogram and the Burg method, applied to electroencephalographic (EEG) signals. For each one of these methods we compute two parameters: the mean power and the root mean square (RMS), in various frequency bands. The classification of the mental tasks was conducted with a linear discriminate analysis. The Welch periodogram and the Burg method performed better than the standard periodogram. The use of the RMS allows better classification accuracy than the obtained with the power of EEG signals.
JTD Keywords: Adult, Algorithms, Artificial Intelligence, Cognition, Electroencephalography, Female, Humans, Male, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Task Performance and Analysis, User-Computer Interface
Díez-Pérez, Ismael, Vericat, Carolina, Gorostiza, Pau, Sanz, Fausto, (2006). The iron passive film breakdown in chloride media may be mediated by transient chloride-induced surface states located within the band gap Electrochemistry Communications , 8, (4), 627-632
Despite its tremendous scientific and economic impact, the mechanism that triggers metal passive film breakdown in the presence of aggressive ions remains under discussion. We have studied the iron passive film in chloride media using X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy and electrochemical tunneling spectroscopy (ECTS). Ex situ XPS reveal that the film consists exclusively of an Fe(III) oxide without chloride content. In situ ECTS has been used to build up conductance maps of the Fe electrode during its electrochemical oxidation in a borate buffer solution and its breakdown when the film is grown in the presence of chloride. This conductograms provide direct and in situ experimental evidence of chloride-induced surface states within the band gap of the oxide film (~3.3eV). These states enable new charge exchange pathways that allow hole capture at the surface of the n-type Fe(III) oxide. The blocking of VB processes that occurs in the iron passive film is no longer present in chloride media, and electrode corrosion can proceed through these new states. We propose a simple 3-step mechanism for the process, in which chloride anions form an oxidizing Fe(II) surface intermediate but do not participate directly in the reaction.
JTD Keywords: Electrochemical tunneling spectroscopy, Electronic band structure, Fe passive film, Aqueous chloride corrosion, Semiconductor decomposition, Interface states