by Keyword: microglia

Martinez A, Hériché JK, Calvo M, Tischer C, Otxoa-de-Amezaga A, Pedragosa J, Bosch A, Planas AM, Petegnief V, (2023). Characterization of microglia behaviour in healthy and pathological conditions with image analysis tools Open Biology 13, 220200

Microglia are very sensitive to changes in the environment and respond through morphological, functional and metabolic adaptations. To depict the modifications microglia undergo under healthy and pathological conditions, we developed free access image analysis scripts to quantify microglia morphologies and phagocytosis. Neuron-glia cultures, in which microglia express the reporter tdTomato, were exposed to excitotoxicity or excitotoxicity + inflammation and analysed 8 h later. Neuronal death was assessed by SYTOX staining of nucleus debris and phagocytosis was measured through the engulfment of SYTOX+ particles in microglia. We identified seven morphologies: round, hypertrophic, fried egg, bipolar and three 'inflamed' morphologies. We generated a classifier able to separate them and assign one of the seven classes to each microglia in sample images. In control cultures, round and hypertrophic morphologies were predominant. Excitotoxicity had a limited effect on the composition of the populations. By contrast, excitotoxicity + inflammation promoted an enrichment in inflamed morphologies and increased the percentage of phagocytosing microglia. Our data suggest that inflammation is critical to promote phenotypical changes in microglia. We also validated our tools for the segmentation of microglia in brain slices and performed morphometry with the obtained mask. Our method is versatile and useful to correlate microglia sub-populations and behaviour with environmental changes.

JTD Keywords: classification, identification, image analysis, injury, morphometry, neuroinflammation, neurotoxicity, phagocytosis, Classification, Image analysis, Microglia, Morphometry, Neuroinflammation, Nitric-oxide, Phagocytosis

Mesquida-Veny, F, Martinez-Torres, S, Del Rio, JA, Hervera, A, (2022). Nociception-Dependent CCL21 Induces Dorsal Root Ganglia Axonal Growth via CCR7-ERK Activation Frontiers In Immunology 13, 880647

While chemokines were originally described for their ability to induce cell migration, many studies show how these proteins also take part in many other cell functions, acting as adaptable messengers in the communication between a diversity of cell types. In the nervous system, chemokines participate both in physiological and pathological processes, and while their expression is often described on glial and immune cells, growing evidence describes the expression of chemokines and their receptors in neurons, highlighting their potential in auto- and paracrine signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and in turn their role in axonal growth. We found that stimulating TRPV1(+) nociceptors induces a transient increase in CCL21. Interestingly we also found that CCL21 enhances neurite growth of large diameter proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21 receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP, triggering actin filament ramification in the growth cone, resulting in increased axonal growth.

JTD Keywords: Actin dynamics, Axonal growth, Ccl21, Ccr7, Cell-migration, Central-nervous-system, Chemokine, Ligands, Mek-erk, Microglia, Neurons, Neuropathic pain, Nociception, Phosphorylation, Regeneration

Bravo, J, Ribeiro, I, Terceiro, AF, Andrade, EB, Portugal, CC, Lopes, IM, Azevedo, MM, Sousa, M, Lopes, CDF, Lobo, AC, Canedo, T, Relvas, JB, Summavielle, T, (2022). Neuron-Microglia Contact-Dependent Mechanisms Attenuate Methamphetamine-Induced Microglia Reactivity and Enhance Neuronal Plasticity Cells 11, 355

Exposure to methamphetamine (Meth) has been classically associated with damage to neuronal terminals. However, it is now becoming clear that addiction may also result from the interplay between glial cells and neurons. Recently, we demonstrated that binge Meth administration promotes microgliosis and microglia pro-inflammation via astrocytic glutamate release in a TNF/IP(3)R2-Ca2+-dependent manner. Here, we investigated the contribution of neuronal cells to this process. As the crosstalk between microglia and neurons may occur by contact-dependent and/or contact-independent mechanisms, we developed co-cultures of primary neurons and microglia in microfluidic devices to investigate how their interaction affects Meth-induced microglia activation. Our results show that neurons exposed to Meth do not activate microglia in a cell-autonomous way but require astrocyte mediation. Importantly, we found that neurons can partially prevent Meth-induced microglia activation via astrocytes, which seems to be achieved by increasing arginase 1 expression and strengthening the CD200/CD200r pathway. We also observed an increase in synaptic individual area, as determined by co-localization of pre- and post-synaptic markers. The present study provides evidence that contact-dependent mechanisms between neurons and microglia can attenuate pro-inflammatory events such as Meth-induced microglia activation.

JTD Keywords: cd200, contact-dependent, methamphetamine, neuron-to-microglia, psd95, Activation, Cd200, Contact-dependent, Expression, Glutamate, Methamphetamine, Neuron-to-microglia, Neuroprotection, Platform, Psd95

Diaz-Lucena D, Kruse N, Thüne K, Schmitz M, Villar-Piqué A, da Cunha JEG, Hermann P, López-Pérez Ó, Andrés-Benito P, Ladogana A, Calero M, Vidal E, Riggert J, Pineau H, Sim V, Zetterberg H, Blennow K, del Río JA, Marín-Moreno A, Espinosa JC, Torres JM, Sánchez-Valle R, Mollenhauer B, Ferrer I, Zerr I, Llorens F, (2021). TREM2 expression in the brain and biological fluids in prion diseases Acta Neuropathologica 141, 841-859

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78–0.90) and neurological controls (AUC = 0.73–0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer’s disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.

JTD Keywords: cerebrospinal fluid, creutzfeldt-jakob disease, microglia, plasma, prion diseases, Cerebrospinal fluid, Creutzfeldt-jakob disease, Microglia, Plasma, Prion diseases, Trem2

Mesquida-Veny F, Del Río JA, Hervera A, (2021). Macrophagic and microglial complexity after neuronal injury Progress In Neurobiology 200

© 2020 Elsevier Ltd Central nervous system (CNS) injuries do not heal properly in contrast to normal tissue repair, in which functional recovery typically occurs. The reason for this dichotomy in wound repair is explained in part by macrophage and microglial malfunction, affecting both the extrinsic and intrinsic barriers to appropriate axonal regeneration. In normal healing tissue, macrophages promote the repair of injured tissue by regulating transitions through different phases of the healing response. In contrast, inflammation dominates the outcome of CNS injury, often leading to secondary damage. Therefore, an understanding of the molecular mechanisms underlying this dichotomy is critical to advance in neuronal repair therapies. Recent studies highlight the plasticity and complexity of macrophages and microglia beyond the classical view of the M1/M2 polarization paradigm. This plasticity represents an in vivo continuous spectrum of phenotypes with overlapping functions and markers. Moreover, macrophage and microglial plasticity affect many events essential for neuronal regeneration after injury, such as myelin and cell debris clearance, inflammation, release of cytokines, and trophic factors, affecting both intrinsic neuronal properties and extracellular matrix deposition. Until recently, this complexity was overlooked in the translation of therapies modulating these responses for the treatment of neuronal injuries. However, recent studies have shed important light on the underlying molecular mechanisms of this complexity and its transitions and effects on regenerative events. Here we review the complexity of macrophages and microglia after neuronal injury and their roles in regeneration, as well as the underlying molecular mechanisms, and we discuss current challenges and future opportunities for treatment.

JTD Keywords: chemokines and cytokines, macrophages, microglia, neuroinflammation, neuronal injury, regeneration, Chemokines and cytokines, Macrophages, Microglia, Neuroinflammation, Neuronal injury, Regeneration