DONATE

Publications

by Keyword: nanotubes

Fontana-Escartín, A, Lanzalaco, S, Zhilev, G, Armelin, E, Bertran, O, Alemán, C, (2024). Oxygen plasma treated thermoplastics as integrated electroresponsive sensors Materials Today Communications 38, 107653

Polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol (PETG) and polylactic acid (PLA) 3D printed specimens, which are intrinsically non-electroresponsive materials, have been converted into electroresponsive electrodes applying a low-pressure oxygen plasma treatment. After complete chemical, morphological and electrochemical characterization, plasma treated samples have been applied as integrated electrochemical sensors for detecting dopamine and serotonin by cyclic voltammetry and chronoamperometry. Results show differences in the sensing behavior, which have been explained on the basis of the chemical structure of the pristine materials. While plasma treated PLA exhibits the highest performance as electrochemical sensor in terms of sensitivity (lowest limits of detection and quantification) and selectivity (against uric acid and ascorbic acid as interfering substances), plasma treated PP displays the poorest behavior due to its low polarity compared to PLA 3D-printed electrodes. Instead, plasma treated TPU and PETG shows a very good response, much closer to PLA, as sensitive electrodes towards neurotransmitter molecules (dopamine and serotonin). Overall, results open a new door for the fabrication of electrochemical conductive sensors using intrinsically insulating materials, without the need of chemical functionalization processes.

JTD Keywords: 3d printing, Amines, Ascorbic acid, Chemical characterization, Cyclic voltammetry, Dopamine, Electrochemical characterizations, Electrochemical sensor s, Electrochemical sensors, Electrode materials, Electroresponsive materials, Low-pressure oxygen-plasma treatments, Morphological characterization, Multiwalled carbon nanotubes (mwcn), Neurophysiology, Oxygen, Oxygen plasmas, Plastic bottles, Polyethylene terephthalate glycol, Polyethylene terephthalate glycols, Polyethylene terephthalates, Polylact i c acid, Polylactic acid, Polylactic acid pla, Polyols, Polypropylene, Polypropylene oxides, Polypropylenes, Polyurethanes, Reinforced plastics, Supercapacitors, Thermoplast i c polyurethane, Thermoplastic polyurethane, Thermoplastic polyurethanes


Gholami, S, Rezvani, A, Vatanpour, V, Khoshravesh, SH, Llorens, J, Engel, E, Castano, O, Cortina, JL, (2023). Chlorine resistance property improvement of polyamide reverse osmosis membranes through cross-linking degree increment Science Of The Total Environment 889, 164283

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.Copyright © 2023 Elsevier B.V. All rights reserved.

JTD Keywords: behavior, carbon nanotubes, desalination, interfacial polymerization, naclo resistance, nanocomposite, nanofiltration membrane, performance, polymerization, ro membranemodification, substrate, water, Antifouling, Desalination, Interfacial polymerization, Naclo resistance, Ro membrane modification, Thin-film composite


Garcia-Torres, J, Colombi, S, Mahamed, I, Sylla, D, Arnau, M, Sans, J, Ginebra, MP, Aleman, C, (2023). Nanocomposite Hydrogels with Temperature Response for Capacitive Energy Storage Acs Applied Energy Materials 6, 4487-4495

Lanzalaco, S, Mingot, J, Torras, J, Alemán, C, Armelin, E, (2023). Recent Advances in Poly(N-isopropylacrylamide) Hydrogels and Derivatives as Promising Materials for Biomedical and Engineering Emerging Applications Advanced Engineering Materials 25,

Mestre, R, Fuentes, J, Lefaix, L, Wang, JJ, Guix, M, Murillo, G, Bashir, R, Sanchez, S, (2023). Improved Performance of Biohybrid Muscle-Based Bio-Bots Doped with Piezoelectric Boron Nitride Nanotubes Advanced Materials Technologies 8,

Biohybrid robots, or bio-bots, integrate living and synthetic materials following a synergistic strategy to acquire some of the unique properties of biological organisms, like adaptability or bio-sensing, which are difficult to obtain exclusively using artificial materials. Skeletal muscle is one of the preferred candidates to power bio-bots, enabling a wide variety of movements from walking to swimming. Conductive nanocomposites, like gold nanoparticles or graphene, can provide benefits to muscle cells by improving the scaffolds' mechanical and conductive properties. Here, boron nitride nanotubes (BNNTs), with piezoelectric properties, are integrated in muscle-based bio-bots and an improvement in their force output and motion speed is demonstrated. A full characterization of the BNNTs is provided, and their piezoelectric behavior with piezometer and dynamometer measurements is confirmed. It is hypothesized that the improved performance is a result of an electric field generated by the nanocomposites due to stresses produced by the cells during differentiation. This hypothesis is backed with finite element simulations supporting that this stress can generate a non-zero electric field within the matrix. With this work, it is shown that the integration of nanocomposite into muscle-based bio-bots can improve their performance, paving the way toward stronger and faster bio-hybrid robots.

JTD Keywords: Bio-bots, Biohybrid robots, Biomaterials, Boron nitride nanotubes, Cells, Cytotoxicity, Differentiation, Myoblasts, Skeletal muscle tissue, Skeletal-muscle, Stimulation


Torabi, N, Qiu, XK, López-Ortiz, M, Loznik, M, Herrmann, A, Kermanpur, A, Ashrafi, A, Chiechi, RC, (2021). Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem i in Biophotovoltaic Devices Langmuir 37, 11465-11473

This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.

JTD Keywords: architecture, arrays, construction, metal, nanotubes, performance, photosynthetic proteins, polymer-fullerene, solar-cells, Photocurrent generation


Steeves, A.J., Ho, W., Munisso, M.C., Lomboni, D.J., Larrañaga, E., Omelon, S., Martínez, Elena, Spinello, D., Variola, F., (2020). The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures International Journal of Nanomedicine 15, 2151-2169

Introduction: In recent years there has been ample interest in nanoscale modifications of synthetic biomaterials to understand fundamental aspects of cell-surface interactions towards improved biological outcomes. In this study, we aimed at closing in on the effects of nanotubular TiO2 surfaces with variable nanotopography on the response on human mesenchymal stem cells (hMSCs). Although the influence of TiO2 nanotubes on the cellular response, and in particular on hMSC activity, has already been addressed in the past, previous studies overlooked critical morphological, structural and physical aspects that go beyond the simple nanotube diameter, such as spatial statistics. Methods: To bridge this gap, we implemented an extensive characterization of nanotubular surfaces generated by anodization of titanium with a focus on spatial structural variables including eccentricity, nearest neighbour distance (NND) and Voronoi entropy, and associated them to the hMSC response. In addition, we assessed the biological potential of a two-tiered honeycomb nanoarchitecture, which allowed the detection of combinatory effects that this hierarchical structure has on stem cells with respect to conventional nanotubular designs. We have combined experimental techniques, ranging from Scanning Electron (SEM) and Atomic Force (AFM) microscopy to Raman spectroscopy, with computational simulations to characterize and model nanotubular surfaces. We evaluated the cell response at 6 hrs, 1 and 2 days by fluorescence microscopy, as well as bone mineral deposition by Raman spectroscopy, demonstrating substrate-induced differential biological cueing at both the short- and long-term. Results: Our work demonstrates that the nanotube diameter is not sufficient to comprehensively characterize nanotubular surfaces and equally important parameters, such as eccentricity and wall thickness, ought to be included since they all contribute to the overall spatial disorder which, in turn, dictates the overall bioactive potential. We have also demonstrated that nanotubular surfaces affect the quality of bone mineral deposited by differentiated stem cells. Lastly, we closed in on the integrated effects exerted by the superimposition of two dissimilar nanotubular arrays in the honeycomb architecture. Discussion: This work delineates a novel approach for the characterization of TiO2 nanotubes which supports the incorporation of critical spatial structural aspects that have been overlooked in previous research. This is a crucial aspect to interpret cellular behaviour on nanotubular substrates. Consequently, we anticipate that this strategy will contribute to the unification of studies focused on the use of such powerful nanostructured surfaces not only for biomedical applications but also in other technology fields, such as catalysis.

JTD Keywords: Nanotubes, Nanotopography, Spatial statistics, Stem cells, Bone quality


Ramos, E., Pardo, W. A., Mir, M., Samitier, J., (2017). Dependence of carbon nanotubes dispersion kinetics on surfactants Nanotechnology 28, (13), 135702

Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

JTD Keywords: Dispersion, DNA, Single-walled carbon nanotubes (SWCNTs), Small angle x-ray scattering (SAXS), Sodium dodecyl sulfate (SDS), Surfactant, Triton X-100


Gramse, G., Casuso, I., Toset, J., Fumagalli, L., Gomila, G., (2009). Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy Nanotechnology 20, (39), 395702

A simple method to measure the static dielectric constant of thin films with nanometric spatial resolution is presented. The dielectric constant is extracted from DC electrostatic force measurements with the use of an accurate analytical model. The method is validated here on thin silicon dioxide films (8 nm thick, dielectric constant approximately 4) and purple membrane monolayers (6 nm thick, dielectric constant approximately 2), providing results in excellent agreement with those recently obtained by nanoscale capacitance microscopy using a current-sensing approach. The main advantage of the force detection approach resides in its simplicity and direct application on any commercial atomic force microscope with no need of additional sophisticated electronics, thus being easily available to researchers in materials science, biophysics and semiconductor technology.

JTD Keywords: Roscopy, Membrane, Tip, Polarizability, Polarization, Resolution, Nanotubes, Charge


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor