DONATE

Publications

by Keyword: nervous-system

del Moral, M, Loeck, M, Muntimadugu, E, Vives, G, Pham, V, Pfeifer, P, Battaglia, G, Muro, S, Andrianov, AK, (2023). Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders J Funct Biomater 14, 440

Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.

JTD Keywords: biodegradation, copolymer ratio, degradation, drug-delivery, emulsification, enzyme release, enzyme replacement therapy, hyaluronidase, mechanisms, microspheres, nanoparticle stability, poly(lactide-co-glycolide) nanoparticles, size, sphingomyelinase, transport, Central-nervous-system, Copolymer ratio, Enzyme release, Enzyme replacement therapy, Hyaluronidase, Lysosomal storage disorder, Nanoparticle stability, Poly(lactide-co-glycolide) nanoparticles


Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution


Badiola-Mateos, M, Osaki, T, Kamm, RD, Samitier, J, (2022). In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system Scientific Reports 12, 21318

Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.© 2022. The Author(s).

JTD Keywords: Amyotrophic-lateral-sclerosis,pluripotent stem-cells,peripheral nervous-system,stretch reflex arc,mechanosensory circuit,cellular-localization,molecular-cloning,motor-neurons,muscle,expressio


Solomon, M, Loeck, M, Silva-Abreu, M, Moscoso, R, Bautista, R, Vigo, M, Muro, S, (2022). Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases Journal Of Controlled Release 349, 1031-1044

Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.Copyright © 2022 Elsevier B.V. All rights reserved.

JTD Keywords: acid sphingomyelinase, antibody-affinity, blood -brain barrier, drug-delivery, icam-1-targeted nanocarriers, in-vivo, mediated endocytosis, model, neurological diseases, niemann-pick, targeted nanocarriers, trafficking, transcytosis pathways, Blood-brain barrier, Central-nervous-system, Lysosomal storage disorders, Neurological diseases, Targeted nanocarriers, Transcytosis pathways


Mesquida-Veny, F, Martinez-Torres, S, Del Rio, JA, Hervera, A, (2022). Nociception-Dependent CCL21 Induces Dorsal Root Ganglia Axonal Growth via CCR7-ERK Activation Frontiers In Immunology 13, 880647

While chemokines were originally described for their ability to induce cell migration, many studies show how these proteins also take part in many other cell functions, acting as adaptable messengers in the communication between a diversity of cell types. In the nervous system, chemokines participate both in physiological and pathological processes, and while their expression is often described on glial and immune cells, growing evidence describes the expression of chemokines and their receptors in neurons, highlighting their potential in auto- and paracrine signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and in turn their role in axonal growth. We found that stimulating TRPV1(+) nociceptors induces a transient increase in CCL21. Interestingly we also found that CCL21 enhances neurite growth of large diameter proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21 receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP, triggering actin filament ramification in the growth cone, resulting in increased axonal growth.

JTD Keywords: axonal growth, ccl21, ccr7, mek-erk, Actin dynamics, Axonal growth, Ccl21, Ccr7, Cell-migration, Central-nervous-system, Chemokine, Ligands, Mek-erk, Microglia, Neurons, Neuropathic pain, Nociception, Phosphorylation, Regeneration


Lopez-Mengual, A, Segura-Feliu, M, Sunyer, R, Sanz-Fraile, H, Otero, J, Mesquida-Veny, F, Gil, V, Hervera, A, Ferrer, I, Soriano, J, Trepat, X, Farre, R, Navajas, D, del Rio, JA, (2022). Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development Frontiers In Cell And Developmental Biology 10, 886110

Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.

JTD Keywords: atomic force microscopy, cajal-retzius cells, cortical development, marginal zone, mechanical cues, Atomic force microscopy, Cajal-retzius cells, Central-nervous-system, Cortical development, Cortical hem, Developing cerebral-cortex, Expression, Growth, Marginal zone, Mechanical cues, Mouse, Neuronal migration, Nogo receptor, Olfactory ensheathing cells, Tangential migration, Traction force microscopy


Villacampa, EG, Larsson, L, Mirzazadeh, R, Kvastad, L, Andersson, A, Mollbrink, A, Kokaraki, G, Monteil, V, Schultz, N, Appelberg, KS, Montserrat, N, Zhang, HB, Penninger, JM, Miesbach, W, Mirazimi, A, Carlson, J, Lundeberg, J, (2021). Genome-wide spatial expression profiling in formalin-fixed tissues Cell Genom 1, 100065

Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.© 2021 The Authors.

JTD Keywords: colonic transit, gut, intestinal motility, ld score regression, metaanalysis, nervous-system, neurotrophic factor, population, severity, Covid-19, Ffpe, Genome-wide, Irritable-bowel-syndrome, Mouse brain, Organoids, Ovarian carcinosarcoma, Pfa, Sars-cov-2, Spatial transcriptomics, Visium