by Keyword: precision
Manzano-Muñoz A, Yeste J, Ortega MA, Martín F, López A, Rosell J, Castro S, Serrano C, Samitier J, Ramón-Azcón J, Montero J, (2022). Microfluidic-based dynamic BH3 profiling predicts anticancer treatment efficacy Npj Precis Oncol 6, 90
Precision medicine is starting to incorporate functional assays to evaluate anticancer agents on patient-isolated tissues or cells to select for the most effective. Among these new technologies, dynamic BH3 profiling (DBP) has emerged and extensively been used to predict treatment efficacy in different types of cancer. DBP uses synthetic BH3 peptides to measure early apoptotic events ('priming') and anticipate therapy-induced cell death leading to tumor elimination. This predictive functional assay presents multiple advantages but a critical limitation: the cell number requirement, that limits drug screening on patient samples, especially in solid tumors. To solve this problem, we developed an innovative microfluidic-based DBP (µDBP) device that overcomes tissue limitations on primary samples. We used microfluidic chips to generate a gradient of BIM BH3 peptide, compared it with the standard flow cytometry based DBP, and tested different anticancer treatments. We first examined this new technology's predictive capacity using gastrointestinal stromal tumor (GIST) cell lines, by comparing imatinib sensitive and resistant cells, and we could detect differences in apoptotic priming and anticipate cytotoxicity. We then validated µDBP on a refractory GIST patient sample and identified that the combination of dactolisib and venetoclax increased apoptotic priming. In summary, this new technology could represent an important advance for precision medicine by providing a fast, easy-to-use and scalable microfluidic device to perform DBP in situ as a routine assay to identify the best treatment for cancer patients.© 2022. The Author(s).
JTD Keywords: biomarkers, cancer drugs, chemotherapy, chip, models, platform, sensitivity, strategy, tumor-cells, Precision medicine
Martens KJA, Gobes M, Archontakis E, Brillas RR, Zijlstra N, Albertazzi L, Hohlbein J, (2022). Enabling Spectrally Resolved Single-Molecule Localization Microscopy at High Emitter Densities Nano Letters 22, 8618-8625
Single-molecule localization microscopy (SMLM) is a powerful super-resolution technique for elucidating structure and dynamics in the life- and material sciences. Simultaneously acquiring spectral information (spectrally resolved SMLM, sSMLM) has been hampered by several challenges: an increased complexity of the optical detection pathway, lower accessible emitter densities, and compromised spatio-spectral resolution. Here we present a single-component, low-cost implementation of sSMLM that addresses these challenges. Using a low-dispersion transmission grating positioned close to the image plane, the +1stdiffraction order is minimally elongated and is analyzed using existing single-molecule localization algorithms. The distance between the 0th and 1st order provides accurate information on the spectral properties of individual emitters. This method enables a 5-fold higher emitter density while discriminating between fluorophores whose peak emissions are less than 15 nm apart. Our approach can find widespread use in single-molecule applications that rely on distinguishing spectrally different fluorophores under low photon conditions.
JTD Keywords: cells, multicolor imaging, nanoscopy, particle tracking, point accumulation for imaging in nanoscale topography (paint), precision, single-molecule fo?rster resonance energy transfer (smfret), stochastic optical reconstruction microscopy (storm), Diffraction-limit, Multicolor imaging, Point accumulation for imaging in nanoscale topography (paint), Single-molecule förster resonance energy transfer (smfret), Single-molecule spectroscopy, Stochastic optical reconstruction microscopy (storm)
Manzano-Muñoz A, Alcon C, Menéndez P, Ramírez M, Seyfried F, Debatin KM, Meyer LH, Samitier J, Montero J, (2021). MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia Frontiers In Cell And Developmental Biology 9,
Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 – a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.
JTD Keywords: apoptosis, bh3 mimetics, cancer, dependence, increases, kinase inhibition, pediatric leukemia, precision medicine, resistance, sensitivity, targeted therapies, tumor-cells, venetoclax, Apoptosis, Bcl-2 family proteins, Bh3 mimetics, Pediatric leukemia, Resistance, Targeted therapies
Garde, A., Laguna, P., Giraldo, B.F., Jané, R., Sörnmo, L., (2012). Ensemble-based time alignment of biomedical signals Proceedings BSI 2012
7th International Workshop on Biosignal Interpretation (BSI 2012) , IEEE (Como, Italy) W3: METHODS FOR BIOMEDICAL SIGNAL PROCESSING ENHANCEMENT, 307-310
In this paper, the problem of time alignment is revisited by adopting an ensemble-based approach with all signals jointly aligned. It is shown that the maximization of an eigenvalue ratio is synonymous to maximizing the signal-to-jitter-and-noise ratio. Since optimization of this criterion is extremely time consuming, a relaxed optimization procedure is introduced which converges much more quickly. Using simulations based on respiratory flow signals, the results suggest that the time delay error variance of the new method is much lower than that obtained with the well-known Woody’s method.
JTD Keywords: Time alignment, Signal ensemble, Subsample precision, Eigenvalue decomposition