by Keyword: selectivity

Acosta-Gutiérrez S, Buckley J, Battaglia G, (2023). The Role of Host Cell Glycans on Virus Infectivity: The SARS-CoV-2 Case Advanced Science 10, 2201853

Glycans are ubiquitously expressed sugars, coating the cell and protein surfaces. They are found on many proteins as either short and branched chains or long chains sticking out from special membrane proteins, known as proteoglycans. This sugar cushion, the glycocalyx, modulates specific interactions and protects the cell. Here it is shown that both the expression of proteoglycans and the glycans expressed on the surface of both the host and virus proteins have a critical role in modulating viral attachment to the cell. A mathematical model using SARS-Cov-2 as an archetypical virus to study the glycan role during infection is proposed. It is shown that this occurs via a tug-of-war of forces. On one side, the multivalent molecular recognition that viral proteins have toward specific host glycans and receptors. On the other side, the glycan steric repulsion that a virus must overcome to approach such specific receptors. By balancing both interactions, viral tropism can be predicted. In other words, the authors can map out the cells susceptible to virus infection in terms of receptors and proteoglycans compositions.© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.

JTD Keywords: binding, entry, glycocalyx, mechanisms, multiplexing, multivalency, nanoparticles, recognition, super-selectivity, viral infectivity, Functional receptor, Glycans, Glycocalyx, Multiplexing, Multivalency, Nanoparticles, Super-selectivity, Viral infectivity

Ahmad, J, Ellis, C, Leech, R, Voytek, B, Garces, P, Jones, E, Buitelaar, J, Loth, E, dos Santos, FP, Amil, AF, Verschure, PFMJ, Murphy, D, McAlonan, G, (2022). From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans Translational Psychiatry 12, 467

Brain function is a product of the balance between excitatory and inhibitory (E/I) brain activity. Variation in the regulation of this activity is thought to give rise to normal variation in human traits, and disruptions are thought to potentially underlie a spectrum of neuropsychiatric conditions (e.g., Autism, Schizophrenia, Downs' Syndrome, intellectual disability). Hypotheses related to E/I dysfunction have the potential to provide cross-diagnostic explanations and to combine genetic and neurological evidence that exists within and between psychiatric conditions. However, the hypothesis has been difficult to test because: (1) it lacks specificity-an E/I dysfunction could pertain to any level in the neural system- neurotransmitters, single neurons/receptors, local networks of neurons, or global brain balance - most researchers do not define the level at which they are examining E/I function; (2) We lack validated methods for assessing E/I function at any of these neural levels in humans. As a result, it has not been possible to reliably or robustly test the E/I hypothesis of psychiatric disorders in a large cohort or longitudinal patient studies. Currently available, in vivo markers of E/I in humans either carry significant risks (e.g., deep brain electrode recordings or using Positron Emission Tomography (PET) with radioactive tracers) and/or are highly restrictive (e.g., limited spatial extent for Transcranial Magnetic Stimulation (TMS) and Magnetic Resonance Spectroscopy (MRS). More recently, a range of novel Electroencephalography (EEG) features has been described, which could serve as proxy markers for E/I at a given level of inference. Thus, in this perspective review, we survey the theories and experimental evidence underlying 6 novel EEG markers and their biological underpinnings at a specific neural level. These cheap-to-record and scalable proxy markers may offer clinical utility for identifying subgroups within and between diagnostic categories, thus directing more tailored sub-grouping and, therefore, treatment strategies. However, we argue that studies in clinical populations are premature. To maximize the potential of prospective EEG markers, we first need to understand the link between underlying E/I mechanisms and measurement techniques.

JTD Keywords: Cortical networks, Direction selectivity, Excitation/inhibition balance, Fast network oscillations, Gaba concentration, Gamma oscillation frequency, Neuronal oscillations, Range temporal correlations, Self-organized criticality, Theta-oscillations

Schieber, Romain, Mas-Moruno, Carlos, Lasserre, Federico, Roa, Joan Josep, Ginebra, Maria-Pau, Mücklich, Frank, Pegueroles, Marta, (2022). Effectiveness of Direct Laser Interference Patterning and Peptide Immobilization on Endothelial Cell Migration for Cardio-Vascular Applications: An In Vitro Study Nanomaterials 12, 1217

Endothelial coverage of an exposed cardiovascular stent surface leads to the occurrence of restenosis and late-stent thrombosis several months after implantation. To overcome this difficulty, modification of stent surfaces with topographical or biochemical features may be performed to increase endothelial cells’ (ECs) adhesion and/or migration. This work combines both strategies on cobalt-chromium (CoCr) alloy and studies the potential synergistic effect of linear patterned surfaces that are obtained by direct laser interference patterning (DLIP), coupled with the use of Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides. An extensive characterization of the modified surfaces was performed by using AFM, XPS, surface charge, electrochemical analysis and fluorescent methods. The biological response was studied in terms of EC adhesion, migration and proliferation assays. CoCr surfaces were successfully patterned with a periodicity of 10 µm and two different depths, D (≈79 and 762 nm). RGD and YIGSR were immobilized on the surfaces by CPTES silanization. Early EC adhesion was increased on the peptide-functionalized surfaces, especially for YIGSR compared to RGD. High-depth patterns generated 80% of ECs’ alignment within the topographical lines and enhanced EC migration. It is noteworthy that the combined use of the two strategies synergistically accelerated the ECs’ migration and proliferation, proving the potential of this strategy to enhance stent endothelialization.

JTD Keywords: adhesion, bare-metal, biofunctionalization, biomaterials, cell adhesive peptides, cobalt-chromium alloy, endothelial cell migration, functionalization, matrix, proliferation, selectivity, shear-stress, surfaces, Direct laser interference patterning (dlip), Drug-eluting stents

Sans J, Arnau M, Sanz V, Turon P, Alemán C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433, 133512

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst

Woythe L, Tito NB, Albertazzi L, (2021). A quantitative view on multivalent nanomedicine targeting Advanced Drug Delivery Reviews 169, 1-21

© 2020 The Authors Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.

JTD Keywords: binding-kinetics, biological identity, biomolecular corona, blood-brain-barrier, drug-delivery, gold nanoparticles, multivalency, nanotechnology, protein corona, quantitative characterization, rational design, super-selectivity, superresolution microscopy, tumor heterogeneity, Ligand-receptor interactions, Multivalency, Nanotechnology, Quantitative characterization, Rational design, Super-selectivity

Pittolo, Silvia, Lee, Hyojung, Lladó, Anna, Tosi, Sébastien, Bosch, Miquel, Bardia, Lídia, Gómez-Santacana, Xavier, Llebaria, Amadeu, Soriano, Eduardo, Colombelli, Julien, Poskanzer, Kira E., Perea, Gertrudis, Gorostiza, Pau, (2019). Reversible silencing of endogenous receptors in intact brain tissue using two-photon pharmacology Proceedings of the National Academy of Sciences of the United States of America 116, (27), 13680-13689

The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast, and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and 2-photon excitation using pulsed near-infrared lasers to reversibly silence metabotropic glutamate 5 (mGlu5) receptor activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 µm. Thus, 2-photon pharmacology using alloswitch allows investigating mGlu5-dependent processes in wild-type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.

JTD Keywords: Photopharmacology, Photoactivation, Pharmacological selectivity, Functional silencing, 2-photon pharmacology