DONATE

Publications

by Keyword: skeletal muscle

Mestre, R, Fuentes, J, Lefaix, L, Wang, JJ, Guix, M, Murillo, G, Bashir, R, Sanchez, S, (2023). Improved Performance of Biohybrid Muscle-Based Bio-Bots Doped with Piezoelectric Boron Nitride Nanotubes Advanced Materials Technologies , 2200505

Biohybrid robots, or bio-bots, integrate living and synthetic materials following a synergistic strategy to acquire some of the unique properties of biological organisms, like adaptability or bio-sensing, which are difficult to obtain exclusively using artificial materials. Skeletal muscle is one of the preferred candidates to power bio-bots, enabling a wide variety of movements from walking to swimming. Conductive nanocomposites, like gold nanoparticles or graphene, can provide benefits to muscle cells by improving the scaffolds' mechanical and conductive properties. Here, boron nitride nanotubes (BNNTs), with piezoelectric properties, are integrated in muscle-based bio-bots and an improvement in their force output and motion speed is demonstrated. A full characterization of the BNNTs is provided, and their piezoelectric behavior with piezometer and dynamometer measurements is confirmed. It is hypothesized that the improved performance is a result of an electric field generated by the nanocomposites due to stresses produced by the cells during differentiation. This hypothesis is backed with finite element simulations supporting that this stress can generate a non-zero electric field within the matrix. With this work, it is shown that the integration of nanocomposite into muscle-based bio-bots can improve their performance, paving the way toward stronger and faster bio-hybrid robots.

JTD Keywords: Bio-bots, Biohybrid robots, Biomaterials, Boron nitride nanotubes, Cells, Cytotoxicity, Differentiation, Myoblasts, Skeletal muscle tissue, Skeletal-muscle, Stimulation


Fernández-Garibay, Xiomara, Gomez-Florit, Manuel, Domingues, Rui M A, Gomes, Manuela, Fernandez-Costa, Juan M., Ramon, Javier, (2022). Xeno-free bioengineered human skeletal muscle tissue using human platelet lysate-based hydrogels Biofabrication 14, 045015

Abstract Bioengineered human skeletal muscle tissues have emerged in the last years as new in vitro systems for disease modeling. These bioartificial muscles are classically fabricated by encapsulating human myogenic precursor cells in a hydrogel scaffold that resembles the extracellular matrix. However, most of these hydrogels are derived from xenogenic sources, and the culture media is supplemented with animal serum, which could interfere in drug testing assays. On the contrary, xeno-free biomaterials and culture conditions in tissue engineering offer increased relevance for developing human disease models. In this work, we used human platelet lysate-based nanocomposite hydrogels (HUgel) as scaffolds for human skeletal muscle tissue engineering. These hydrogels consist of human platelet lysate reinforced with cellulose nanocrystals (a-CNC) that allow tunable mechanical, structural, and biochemical properties for the 3D culture of stem cells. Here, we developed hydrogel casting platforms to encapsulate human muscle satellite stem cells in HUgel. The a-CNC content was modulated to enhance matrix remodeling, uniaxial tension, and self-organization of the cells, resulting in the formation of highly aligned, long myotubes expressing sarcomeric proteins. Moreover, the bioengineered human muscles were subjected to electrical stimulation, and the exerted contractile forces were measured in a non-invasive manner. Overall, our results demonstrated that the bioengineered human skeletal muscles could be built in xeno-free cell culture platforms to assess tissue functionality, which is promising for drug development applications.

JTD Keywords: 3d culture, generation, identification, image, manipulate, matrigel, mechanics, model, platelet lysate, scaffolds, tissue engineering, xeno-free, Platform, Skeletal muscle


Fernández‐Costa, Juan M., Ortega, María A., Rodríguez‐Comas, Júlia, Lopez‐Muñoz, Gerardo, Yeste, Jose, Mangas‐Florencio, Lluís, Fernández‐González, Miriam, Martin‐Lasierra, Eduard, Tejedera‐Villafranca, Ainoa, Ramon‐Azcon, Javier, (2022). Training-on-a-Chip: A MultiOrgan Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro Advanced Materials Technologies , 2200873

Ferret Minana, A, De Chiara, F, Ramon Azcon, J, (2022). 3D IN VITRO MODELS FOR THE STUDY OF LIVER-SKELETAL MUSCLE AXIS IN NAFLD (Abstract 2030) Tissue Engineering Part a 28, S576

Non-alcoholic fatty liver disease (NAFLD) affects 1 in 4 peopleworldwide. It ranges from simple steatosis to non-alcoholic steato-hepatitis, which may progress to cirrhosis, and hepatocellular car-cinoma. From 30 to 70% of patients with NAFLD suffer fromgeneralised loss of skeletal muscle (SM) mass (sarcopenia). Why andhow skeletal muscle mass influences the development of NAFLD isnot completely elucidated. Here, we present a three-dimensionalmodel of fatty liver and subsequent loss of SM in vitro.Mouse hepatocytes and AML2 and SM C2C12 were encapsulatedin solution of gelatin methacryloyl and sodium carboxymethylcel-lulose at concentration of 5 and 1%, respectively. The photo-initiatorLAP was then added at concentration of 0.1% and the polymer ex-posed at UV light for 30 seconds. The fatty liver is induced uponincubation of the cell with non-esterified fatty acids (NEFAs) forvarious timepoints. The supernatant from those cells were then in-cubated with SM cells.Hepatocytes showed lipid accumulation, nuclei distortion and celldeath after 48h of culture with NEFAs assessed by confocal andbright microscopy. Albumin and urea cycle enzymes levels alsoshowed a time dependent decrease at protein and mRNA levels. TheSM cells in contact with supernatant from fatty hepatocytes dis-played loss of cytoplasmatic mass, metabolic activity and efficiencyin time dependent manner as showed by H&E staining and MTSassay, respectively.Liver and SM are connected at cellular level during the devel-opment of NAFLD, pinpointing to a broader therapeutic approach tothe disease.

JTD Keywords: Nafld, Sarcopenia, Skeletal muscle


Tantai, Xinxing, Liu, Yi, Yeo, Yee Hui, Praktiknjo, Michael, Mauro, Ezequiel, Hamaguchi, Yuhei, Engelmann, Cornelius, Zhang, Peng, Jeong, Jae Yoon, van Vugt, Jeroen Laurens Ad, Xiao, Huijuan, Deng, Huan, Gao, Xu, Ye, Qing, Zhang, Jiayuan, Yang, Longbao, Cai, Yaqin, Liu, Yixin, Liu, Na, Li, Zongfang, Han, Tao, Kaido, Toshimi, Sohn, Joo Hyun, Strassburg, Christian, Berg, Thomas, Trebicka, Jonel, Hsu, Yao-Chun, IJzermans, Jan Nicolaas Maria, Wang, Jinhai, Su, Grace L., Ji, Fanpu, Nguyen, Mindie H., (2022). Effect of sarcopenia on survival of patients with cirrhosis: A meta-analysis Journal Of Hepatology 76, 588-599

The association between sarcopenia and prognosis in patients with cirrhosis remains to be determined. In this study, we aimed to quantify the association between sarcopenia and the risk of mortality in patients with cirrhosis, by sex, underlying liver disease etiology, and severity of hepatic dysfunction.PubMed, Web of Science, EMBASE, and major scientific conference sessions were searched without language restriction through 13 January 2021 with additional manual search of bibliographies of relevant articles. Cohort studies of ?100 patients with cirrhosis and ?12 months of follow-up that evaluated the association between sarcopenia, muscle mass and the risk of mortality were included.22 studies with 6965 patients with cirrhosis were included. The pooled prevalence of sarcopenia in patients with cirrhosis was 37.5% overall (95% CI 32.4%-42.8%), higher in male patients, patients with alcohol associated liver disease (ALD), patients with CTP grade C, and when sarcopenia was defined in patients by lumbar 3- skeletal muscle index (L3-SMI). Sarcopenia was associated with the increased risk of mortality in patients with cirrhosis (adjusted-hazard ratio [aHR] 2.30, 95% CI 2.01-2.63), with similar findings in sensitivity analysis of cirrhosis patients without HCC (aHR 2.35, 95% CI 1.95-2.83) and in subgroup analysis by sex, liver disease etiology, and severity of hepatic dysfunction. The association between quantitative muscle mass index and mortality further supports the poor prognosis for patients with sarcopenia (aHR 0.95, 95% CI 0.93-0.98). There was no significant heterogeneity in all analyses.Sarcopenia was highly and independently associated with higher risk of mortality in patients with cirrhosis.The prevalence of sarcopenia and its association with death in patients with cirrhosis remain unclear. This meta-analysis indicated that sarcopenia affected about one-third of patients with cirrhosis and up to 50% in patients with ALD or Child's class C cirrhosis. Sarcopenia was independently associated with about 2-fold higher risk of mortality in patients with cirrhosis. The mortality rate increased with greater severity or longer period of having sarcopenia. Increasing awareness about the importance of sarcopenia in patients with cirrhosis among stakeholders must be prioritized.Copyright © 2021. Published by Elsevier B.V.

JTD Keywords: alcohol associated liver disease, alcohol-associated liver disease, cirrhosis, failure, frailty, impact, list, mass, model, mortality, prognosis, prognostic value, sarcopenia, severe muscle depletion, skeletal muscle index, Alcohol-associated liver disease, Cirrhosis, Liver-transplant candidates, Prognosis, Sarcopenia, Skeletal muscle index


Lopez-Muñoz, Gerardo A, Fernández-Costa, Juan M, Ortega, Maria Alejandra, Balaguer-Trias, Jordina, Martin-Lasierra, Eduard, Ramón-Azcón, Javier, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Mestre R, García N, Patiño T, Guix M, Fuentes J, Valerio-Santiago M, Almiñana N, Sánchez S, (2021). 3D-bioengineered model of human skeletal muscle tissue with phenotypic features of aging for drug testing purposes Biofabrication 13,

Three-dimensional engineering of skeletal muscle is becoming increasingly relevant for tissue engineering, disease modeling and bio-hybrid robotics, where flexible, versatile and multidisciplinary approaches for the evaluation of tissue differentiation, functionality and force measurement are required. This works presents a 3D-printed platform of bioengineered human skeletal muscle which can efficiently model the three-dimensional structure of native tissue, while providing information about force generation and contraction profiles. Proper differentiation and maturation of myocytes is demonstrated by the expression of key myo-proteins using immunocytochemistry and analyzed by confocal microscopy, and the functionality assessed via electrical stimulation and analysis of contraction kinetics. To validate the flexibility of this platform for complex tissue modeling, the bioengineered muscle is treated with tumor necrosis factor α to mimic the conditions of aging, which is supported by morphological and functional changes. Moreover, as a proof of concept, the effects of Argireline® Amplified peptide, a cosmetic ingredient that causes muscle relaxation, are evaluated in both healthy and aged tissue models. Therefore, the results demonstrate that this 3D-bioengineered human muscle platform could be used to assess morphological and functional changes in the aging process of muscular tissue with potential applications in biomedicine, cosmetics and bio-hybrid robotics.

JTD Keywords: 3d bioprinting, bio-actuator, drug testing, human skeletal muscle, muscle ageing, platform, tnf-alpha, 3d bioprinting, Bio-actuator, Drug testing, Human skeletal muscle, Muscle ageing, Necrosis-factor-alpha


Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, Fernández-Costa JM, Ramón-Azcón J, (2021). Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle Biofabrication 13,

Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models and in vitro two-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the first in vitro 3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.

JTD Keywords: 3d cell culture, hydrogel micropatterning, myotonic dystrophy, skeletal muscle, tissue engineering, 3d cell culture, Hydrogel micropatterning, Myotonic dystrophy, Skeletal muscle, Tissue engineering


Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J, (2021). Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies Journal Of Tissue Engineering 12,

© The Author(s) 2021. Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.

JTD Keywords: biomaterials, drug screening platforms, muscular dystrophy, skeletal muscle, tissue engineering, Biomaterials, Drug screening platforms, Muscular dystrophy, Skeletal muscle, Tissue engineering


Hernández-Albors, Alejandro, Castaño, Albert G., Fernández-Garibay, Xiomara, Ortega, María Alejandra, Balaguer, Jordina, Ramón-Azcón, Javier, (2019). Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines Biosensors and Bioelectronics: X 2, 100025

Understanding the protein-secretion dynamics from single, specific tissues is critical toward the advancement of disease detection and treatments. However, such secretion dynamics remain difficult to measure in vivo due to the uncontrolled contributions from other tissue populations. Here, we describe an integrated platform designed for the reliable, near real-time measurements of cytokines secreted from an in vitro single-tissue model. In our setup, we grow 3D biomimetic tissues to discretize cytokine source, and we separate them from a magnetic microbead-based biosensing system using a Transwell insert. This design integrates physiochemically controlled biological activity, high-sensitivity protein detection (LOD < 20 pg mL−1), and rapid protein diffusion to enable non-invasive, near real-time measurements. To showcase the specificity and sensitivity of the system, we use our setup to probe the inflammatory process related to the protein Interleukine 6 (IL-6) and to the Tumor Necrosis Factor (TNF-α). We show that our setup can monitor the time-dependence profile of IL-6 and TNF-α secretion that results from the electrical and chemical stimulation of 3D skeletal muscle tissues. We demonstrate a novel and affordable methodology for discretizing the secretion kinetics of specific tissues for advancing metabolic-disorder studies and drug-screening applications.

JTD Keywords: Microphysiological tissues, Tissue engineering, Electrochemical, biosensors, Magnetic particles, Skeletal muscle, Electric stimulation


Mohammadi, M. H., Obregón, R., Ahadian, S., Ramón-Azcón, J., Radisic, M., (2017). Engineered muscle tissues for disease modeling and drug screening applications Current Pharmaceutical Design , 23, (20), 2991-3004

Animal models have been the main resources for drug discovery and prediction of drugs’ pharmacokinetic responses in the body. However, noticeable drawbacks associated with animal models include high cost, low reproducibility, low physiological similarity to humans, and ethical problems. Engineered tissue models have recently emerged as an alternative or substitute for animal models in drug discovery and testing and disease modeling. In this review, we focus on skeletal muscle and cardiac muscle tissues by first describing their characterization and physiology. Major fabrication technologies (i.e., electrospinning, bioprinting, dielectrophoresis, textile technology, and microfluidics) to make functional muscle tissues are then described. Finally, currently used muscle tissue models in drug screening are reviewed and discussed.

JTD Keywords: Cardiac muscle, Drug screening, Engineering muscle, Human pharmacological response, Physiological similarity, Skeletal muscle