DONATE

Publications

by Keyword: tissue mechanics

Pérez-González, Carlos, Ceada, Gerardo, Matejcic, Marija, Trepat, Xavier, (2022). Digesting the mechanobiology of the intestinal epithelium Current Opinion In Genetics & Development 72, 82-90

The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

JTD Keywords: crypt fission, designer matrices, differentiation, growth, gut, migration, model, scaffold, tissue mechanics, Cell migration, Cell proliferation, Ex vivo study, Human tissue, Intestine epithelium, Monolayer culture, Organoid, Review, Stem-cell, Tension, Traction therapy


Nyga, Agata, Muñoz, Jose J., Dercksen, Suze, Fornabaio, Giulia, Uroz, Marina, Trepat, Xavier, Baum, Buzz, Matthews, Helen K., Conte, Vito, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467

Elosegui-Artola A, (2021). The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics Current Opinion In Cell Biology 72, 10-18

The extracellular matrix mechanical properties regulate processes in development, cancer, and fibrosis. Among the distinct mechanical properties, the vast majority of research has focused on the extracellular matrix's elasticity as the primary determinant of cell and tissue behavior. However, both cells and the extracellular matrix are not only elastic but also viscous. Despite viscoelasticity being a universal feature of living tissues, our knowledge of the influence of the extracellular matrix's viscoelasticity in cell behavior is limited. This mini-review describes some of the recent findings that have highlighted the role of the extracellular matrix's viscoelasticity in cell and tissue dynamics.

JTD Keywords: behavior, cell adhesion, cell mechanics, cell migration, deformability, extracellular matrix, extracellular matrix mechanics, fluidity, forces, hydrogels, mechanobiology, mechanotransduction, tissue mechanics, viscoelasticity, viscosity, Cell adhesion, Cell mechanics, Cell migration, Extracellular matrix, Extracellular matrix mechanics, Fluidity, Mechanobiology, Mechanotransduction, Migration, Tissue mechanics, Viscoelasticity, Viscosity