DONATE

Publications

by Keyword: splicing

Pietroforte, S, Monasterio, MB, Ferrer-Vaquer, A, Irimia, M, Ibáñez, E, Popovic, M, Vassena, R, Zambelli, F, (2023). Specific processing of meiosis-related transcript is linked to final maturation in human oocytes Molecular Human Reproduction 29, gaad021

Human meiosis in oocytes entails an intricate regulation of the transcriptome to support late oocyte growth and early embryo development, both crucial to reproductive success. Currently, little is known about the co- and post-transcriptional mRNA processing mechanisms regulating the last meiotic phases, which contribute to transcriptome complexity and influence translation rates. We analyzed gene expression changes, splicing and pre-mRNA processing in an RNA sequencing set of 40 human oocytes at different meiotic maturation stages, matured both in vivo and in vitro. We found abundant untranslated region (UTR) processing, mostly at the 3' end, of meiosis-related genes between the germinal vesicle (GV) and metaphase II (MII) stages, supported by the differential expression of spliceosome and pre-mRNA processing related genes. Importantly, we found very few differences among GV oocytes across several durations of IVM, as long as they did not reach MII, suggesting an association of RNA processing and successful meiosis transit. Changes in protein isoforms are minor, although specific and consistent for genes involved in chromosome organization and spindle assembly. In conclusion, we reveal a dynamic transcript remodeling during human female meiosis, and show how pre-mRNA processing, specifically 3'UTR shortening, drives a selective translational regulation of transcripts necessary to reach final meiotic maturation.© The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

JTD Keywords: 3 & prime, alternative splicing, gene expression, meiosis, oocyte competence, program, rna, splicing, untranslated region processing, untranslated regions, 3′ untranslated region processing, 3′ untranslated regions, Alternative splicing, Expression, Gene expression, Human oocytes, Meiosis, Oocyte competence, Splicing


Ferrer, I, Andrés-Benito, P, Carmona, M, del Rio, JA, (2022). Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice International Journal Of Molecular Sciences 23, 15940

Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton.

JTD Keywords: alzheimer's disease (ad), alzheimers-disease, brain, corticobasal degeneration, globular glial tauopathy (ggt), htau, isoforms, pathological tau, pick's disease (pid), picks-disease, propagation, protein, seeding, tau splicing, tauopathy, Alzheimer’s disease (ad), Globular glial tauopathy (ggt), Htau, Paired helical filaments, Pick’s disease (pid), Seeding, Tau, Tau splicing


Lidón, L, Llaó-Hierro, L, Nuvolone, M, Aguzzi, A, Avila, J, Ferrer, I, del Río, JA, Gavín, R, (2021). Tau exon 10 inclusion by prpc through downregulating gsk3? activity International Journal Of Molecular Sciences 22, 5370

Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3?, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3? in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3? activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3?. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: alternative splicing, alzheimer's disease, alzheimers-disease, alzheimer’s disease, amyloid-beta, cellular prion protein, frontotemporal dementia, glycogen-synthase kinase-3, gsk3 beta, gsk3?, gsk3β, messenger-rna, microtubule-associated protein tau, neurofibrillary tangles, progressive supranuclear palsy, promotes neuronal differentiation, stem-cells, tauopathies, Alternative splicing, Alzheimer’s disease, Cellular prion protein, Gsk3?, Microtubule-associated protein tau, Tauopathies


Martorell, L., Corrales, I., Ramirez, L., Parra, R., Raya, A., Barquinero, J., Vidal, F., (2015). Molecular characterization of ten F8 splicing mutations in RNA isolated from patient's leucocytes: Assessment of in silico prediction tools accuracy Haemophilia , 21, (2), 249-257

Summary: Although 8% of reported FVIII gene (F8) mutations responsible for haemophilia A (HA) affect mRNA processing, very few have been fully characterized at the mRNA level and/or systematically predicted their biological consequences by in silico analysis. This study is aimed to elucidate the effect of potential splice site mutations (PSSM) on the F8 mRNA processing, investigate its correlation with disease severity, and assess their concordance with in silico predictions. We studied the F8 mRNA from 10 HA patient's leucocytes with PSSM by RT-PCR and compared the experimental results with those predicted in silico. The mRNA analysis could explain all the phenotypes observed and demonstrated exon skipping in six cases (c.222G>A, c.601+1delG, c.602-11T>G, c.671-3C>G, c.6115+9C>G and c.6116-1G>A) and activation of cryptic splicing sites, both donor (c.1009+1G>A and c.1009+3A>C) and acceptor sites (c.266-3delC and c.5587-1G>A). In contrast, the in silico analysis was able to predict the score variation of most of the affected splice site, but the precise mechanism could only be correctly determined in two of the 10 mutations analysed. In addition, we have detected aberrant F8 transcripts, even in healthy controls, so this must be taken into account as they could mask the actual contribution of some PSSM. We conclude that F8 mRNA analysis using leucocytes still constitutes an excellent approach to investigate the transcriptional effects of the PSSM in HA, whereas prediction in silico is not always reliable for diagnostic decision-making.

JTD Keywords: Haemophilia A, Leucocytes, RNA splicing, Splice site mutation, Synonymous mutation