by Keyword: biomedicine
De Lama-Odría, MD, del Valle, LJ, Puiggalí, J, (2023). Lanthanides-Substituted Hydroxyapatite for Biomedical Applications International Journal Of Molecular Sciences 24, 3446
Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.
JTD Keywords: biolabeling, biomedicine, biosensors, bone regeneration, calcium, cancer treatment, cationic ions, cell imaging, cerium, doped hap, hydroxyapatite, implants, in-vitro bioactivity, lanthanides-substitutions, lanthanidessubstitutions, nanoparticles, radiation synovectomy, sm-153 particulate hydroxyapatite, structural-characterization, theragnostics, theranostic nanoplatforms, Europium-doped hydroxyapatite, Hydroxyapatite, Theragnostics
Blanco-Fernandez, G, Blanco-Fernandez, B, Fernández-Ferreiro, A, Otero-Espinar, F, (2023). Bringing lipidic lyotropic liquid crystal technology into biomedicine Trends In Pharmacological Sciences 44, 7-10
Liquid crystals (LCs), discovered more than 130 years ago, are now emerging in the field of biomedicine. This article highlights the recent uses of lipid lyotropic LCs in therapeutics delivery, imaging, and tissue engineering and invites the scientific community to continue exploring the design of more complex LCs. © 2022 Elsevier Ltd
JTD Keywords: biomedicine, drug delivery, glycerol monooleate, imaging, tissue engineering, Biomedicine, Drug delivery, Glycerol monooleate, Imaging, tissue engineering, Lyotropic liquid crystals
Mir, M., Lugo, R., Tahirbegi, I. B., Samitier, J., (2014). Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications Sensors 14, (7), 11844-11854
Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.
JTD Keywords: Biomedicine, Electrochemistry, Endoscope, Implantable device, Ion-selective electrode (ISE) sensor, Ischemia, pH detection, Biocompatibility, Chemical sensors, Electrochemistry, Electrodes, Electropolymerization, Endoscopy, Functional polymers, Implants (surgical), Ion selective electrodes, Medical applications, Polyvinyl chlorides, Stabilization, Biomedical applications, Biomedicine, Implantable devices, Ion selective sensors, Ischemia, Membrane instability, pH detection, Poly(3 ,4 ethylenedioxythiophene) (PEDOT), Ion selective membranes
Tahirbegi, I. B., Alvira, M., Mir, M., Samitier, J., (2014). Simple and fast method for fabrication of endoscopic implantable sensor arrays Sensors 14, (7), 11416-11426
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.
JTD Keywords: Chemical sensors, Cyclic voltammetry, Electrochemistry, Endoscopy, Fabrication, Implants (surgical), Microelectrodes, Needles, Nitrates, Scanning electron microscopy, Biomedicine, Fabricated sensors, Fabrication equipment, Implantable devices, Implantable sensors, Optical interferometry, Planar electrode, Roughness factor, Ion selective electrodes