DONATE

Publications

by Keyword: Discovery

Román-Alamo, L, Avalos-Padilla, Y, Bouzón-Arnáiz, I, Iglesias, V, Fernández-Lajo, J, Monteiro, JM, Rivas, L, Fisa, R, Riera, C, Andreu, D, Pintado-Grima, C, Ventura, S, Arce, EM, Muñoz-Torrero, D, Fernàndez-Busquets, X, (2024). Effect of the aggregated protein dye YAT2150 on Leishmania parasite viability Antimicrobial Agents And Chemotherapy 68, e01127-23

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 mu M against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 mu M in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 mu M. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.

JTD Keywords: Animal, Animals, Antileishmanial drugs, Antiprotozoal agent, Antiprotozoal agents, Axenic amastigotes, Colocalization, Differentiation, Discovery, Endothelial cells, Endothelium cell, Human, Humans, Identification, Leishmania, Leishmania infantum, Leishmaniasis, Parasite, Parasites, Protein aggregation, Yat2150, Yeast


Fulgheri, F, Manca, ML, Fernàndez-Busquets, X, Manconi, M, (2023). Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection Nanomedicine 18, 1681-1696

The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.

JTD Keywords: antiplasmodial activity, bioavailability, chloroquine, combination therapy, discovery, drug-delivery, drug-delivery systems, nanocapsules, nanomedicine, natural molecules, pharmacokinetics, phytomedicine, plasmodium-falciparum, Artemisinin-based combination therapy, Drug-delivery systems, Nanomedicine, Natural molecules, Phytomedicine, Solid lipid nanoparticles


Velasco, P, Bautista, F, Rubio, A, Aguilar, Y, Rives, S, Dapena, JL, Pérez, A, Ramirez, M, Saiz-Ladera, C, Izquierdo, E, Escudero, A, Camós, M, Vega-Garcia, N, Ortega, M, Hidalgo-Gomez, G, Palacio, C, Menéndez, P, Bueno, C, Montero, J, Romecín, PA, Zazo, S, Alvarez, F, Parras, J, Ortega-Sabater, C, Chulián, S, Rosa, M, Cirillo, D, García, E, García, J, Manzano-Muñoz, A, Minguela, A, Fuster, JL, (2023). The relapsed acute lymphoblastic leukemia network (ReALLNet): a multidisciplinary project from the spanish society of pediatric hematology and oncology (SEHOP) Frontiers In Pediatrics 11, 1269560

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with survival rates exceeding 85%. However, 15% of patients will relapse; consequently, their survival rates decrease to below 50%. Therefore, several research and innovation studies are focusing on pediatric relapsed or refractory ALL (R/R ALL). Driven by this context and following the European strategic plan to implement precision medicine equitably, the Relapsed ALL Network (ReALLNet) was launched under the umbrella of SEHOP in 2021, aiming to connect bedside patient care with expert groups in R/R ALL in an interdisciplinary and multicentric network. To achieve this objective, a board consisting of experts in diagnosis, management, preclinical research, and clinical trials has been established. The requirements of treatment centers have been evaluated, and the available oncogenomic and functional study resources have been assessed and organized. A shipping platform has been developed to process samples requiring study derivation, and an integrated diagnostic committee has been established to report results. These biological data, as well as patient outcomes, are collected in a national registry. Additionally, samples from all patients are stored in a biobank. This comprehensive repository of data and samples is expected to foster an environment where preclinical researchers and data scientists can seek to meet the complex needs of this challenging population. This proof of concept aims to demonstrate that a network-based organization, such as that embodied by ReALLNet, provides the ideal niche for the equitable and efficient implementation of "what's next" in the management of children with R/R ALL.© 2023 Velasco, Bautista, Rubio, Aguilar, Rives, Dapena, Pérez, Ramirez, Saiz-Ladera, Izquierdo, Escudero, Camós, Vega-Garcia, Ortega, Hidalgo-Gómez, Palacio, Menéndez, Bueno, Montero, Romecín, Zazo, Alvarez, Parras, Ortega-Sabater, Chulián, Rosa, Cirillo, García, García, Manzano-Muñoz, Minguela and Fuster.

JTD Keywords: artificial intelligence, cancer registry, children, discovery, functional assay, outcomes, precision medicine, risk-factors, Artificial intelligence, B-cell precursor, Cancer registry, Functional assay, Precision medicine, Relapsed acute lymphoblastic leukemia


Blanco-Fernandez, B, Ibanez-Fonesca, A, Orbanic, D, Ximenes-Carballo, C, Perez-Amodio, S, Rodriguez-Cabello, JC, Engel, E, (2023). Elastin-like Recombinamer Hydrogels as Platforms for Breast Cancer Modeling Biomacromolecules 24, 4408-4418

The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.

JTD Keywords: clinical-trials, collagen i, discovery, mcf-7 cells, phenotype, progression, spheroids, translation, tumor microenvironment, Extracellular-matrix


Chacon, DS, Santos, MDM, Bonilauri, B, Vilasboa, J, da Costa, CT, da Silva, IB, Torres, TD, de Araujo, TF, Roque, AD, Pilon, AC, Selegatto, DM, Freire, RT, Reginaldo, FPS, Voigt, EL, Zuanazzi, JAS, Scortecci, KC, Cavalheiro, AJ, Lopes, NP, Ferreira, LD, Santos, LVD, Fontes, W, de Sousa, MV, Carvalho, PC, Fett-Neto, AG, Giordani, RB, (2022). Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant Frontiers In Plant Science 13, 947558

Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.

JTD Keywords: caatinga, erythrina velutina, flavonoids, molecular network, Arabidopsis, Caatinga, Classification, Discovery, Erythrina velutina, Flavonoids, Identification, Mass-spectrometry, Messenger-rna, Metabolism, Molecular network, Natural-products, Protein abundance, Transcriptome


Tuveri, GM, Ceccarelli, M, Pira, A, Bodrenko, IV, (2022). The Optimal Permeation of Cyclic Boronates to Cross the Outer Membrane via the Porin Pathway Antibiotics 11, 840

We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.

JTD Keywords: beta-lactamase inhibitors, cyclic boronates, diffusion current, metadynamics, molecular dynamics simulations, permeation, Antibiotics, Beta-lactamase inhibitors, Cyclic boronates, Diffusion, Diffusion current, Discovery, Electric-field, Metadynamics, Molecular dynamics simulations, Molecular-dynamics simulations, Nanopores, Permeability, Permeation, Porins, Rules, Translocation


Vukomanovic, M, Cendra, MD, Baelo, A, Torrents, E, (2021). Nano-engineering stable contact-based antimicrobials: Chemistry at the interface between nano-gold and bacteria Colloids And Surfaces B-Biointerfaces 208, 112083

Contact-based antimicrobials, as antibiotic-free technologies that use non-specific interactions with bacterial cells to exert antimicrobial activity, are a prospective solution in fighting the global issue of bacterial resistance. A very simplified approach to their design considers the direct bonding of cationic guanidine-containing amino acids to the surface of nano-gold carriers. The structure enables antimicrobial activity due to a high density of cationic surface charges. This opens a set of novel questions that are important for their effective engineering, particularly regarding (i) chemistry and events that take place at the interface between NPs and cells, (ii) the direct influence of a charge (and its change) on interactions with bacterial and mammalian cells, and (iii) the stability of structures (and their antimicrobial activity) in the presence of enzymes, which are addressed in this paper. Because of the ability of amino acid-functionalized nano-gold to retain structural and functional activity, even after exposure to a range of physicochemical stimuli, they provide an excellent nanotechnological platform for designing highly effective contact-based antimicrobials and their applications.

JTD Keywords: agents, antibiotic-free technology, arginine, charged amino acids, contact-based antimicrobials, discovery, enzyme-resistant antimicrobials, functionalized gold, peptides, polymers, resistant, Antibiotic-free technology, Charged amino acids, Contact-based antimicrobials, Enzyme-resistant antimicrobials, Functionalized gold, Nanoparticles


Morgado, A, Najera, F, Lagunas, A, Samitier, J, Vida, Y, Perez-Inestrosa, E, (2021). Slightly congested amino terminal dendrimers. The synthesis of amide-based stable structures on a large scale Polymer Chemistry 12, 5168-5177

Nowadays, amino terminal dendrimers are appealing materials for biological applications due to their multivalence and the versatile conjugation of the amino groups. However, the high reactivity of these terminal groups can be decreased by steric hindrance, limiting their possible bioapplications. Herein, we report the divergent synthesis of slightly sterically hindered amino terminal polyamide dendrimers. A simple and unique AB(2) scaffold has been chosen to build the dendritic structures, where only amide bonds have been used as the connecting unit. The 1-7 relative positions of the amino groups in the AB(2) monomers avoid the steric congestion of the macromolecules, allowing the construction of robust dendrimers up to the fifth generation. The construction of the dendrimers is based on two well-established reactions, using simple and cheap reactants, with yields above 90% on a gram scale and easy purification procedures. This synthetic methodology constitutes an easy and efficient way for the preparation of stable and aqueous soluble dendrimers on a gram scale, representing a substantial improvement over the synthesis of this kind of aliphatic polyamide amino terminal dendrimer. The prepared structures were completely characterized and evaluated by size exclusion chromatography, diffusion ordered spectroscopy and atomic force microscopy to determine their size. Molecular dynamics simulations were also carried out and the values obtained were consistent with the experimentally determined values.

JTD Keywords: Density, Discovery, Pamam dendrimers, Polymers


Soblechero-Martín, P, Albiasu-Arteta, E, Anton-Martinez, A, de la Puente-ovejero, L, Garcia-Jimenez, I, González-Iglesias, G, Larrañaga-Aiestaran, I, López-Martínez, A, Poyatos-García, J, Ruiz-Del-Yerro, E, Gonzalez, F, Arechavala-Gomeza, V, (2021). Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening Scientific Reports 11, 18188

Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient’s immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and β-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.

JTD Keywords: expression, in-vitro, mouse model, muscle, mutations, phenotype, quantification, sarcolemma, therapy, 3' untranslated regions, Cells, cultured, Crispr-cas systems, Cytoskeletal proteins, Drug discovery, Dystroglycans, Dystrophin, Gene editing, Hek293 cells, Humans, Muscular dystrophy, duchenne, Myoblasts, Myogenic regulatory factor 5, Primary cell culture, Sarcoglycans, Utrophin, Utrophin up-regulation


Ortega, MA, Rodríguez-Comas, J, Velasco-Mallorquí, F, Balaguer-Trias, J, Parra, V, Ramón-Azcón, J, Yavas, O, Quidant, R, Novials, A, Servitja, JM, (2021). In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip Biosensors 11, 138

Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.

JTD Keywords: biosensor, cytoarchitecture, dna hybridization, gelatin, in situ insulin monitoring, langerhans, lspr sensors, microfluidic device, organ-on-a-chip, parallel, platform, scaffold, Animals, Biosensing techniques, Diabetes mellitus, type 2, Drug discovery, Drug evaluation, preclinical, Human pancreatic-islets, Humans, In situ insulin monitoring, Insulin secretion, Insulins, Lab-on-a-chip devices, Lspr sensors, Oligonucleotide array sequence analysis, Organ-on-a-chip, Surface plasmon resonance


Paoli, R., Samitier, J., (2016). Mimicking the kidney: A key role in organ-on-chip development Micromachines , 7, (7), 126

Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called "organ-on-chip" (OOC) technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation-more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.

JTD Keywords: Disease model, Drug discovery, Kidney, Nephron-on-chip, Organ-on-chip


Sisquella, X., de Pourcq, K., Alguacil, J., Robles, J., Sanz, F., Anselmetti, D., Imperial, S., Fernàndez-Busquets, X., (2010). A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials FASEB Journal , 24, (11), 4203-4217

An important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate. The data obtained in this pioneering SMFS analysis of a bisubstrate enzymatic reaction illustrate the substrate sequentiality in DXS activity and allow for the calculation of catalytic parameters with single-molecule resolution. The DXS inhibitor fluoropyruvate has been detected in our SMFS competition experiments at a concentration of 10 mu M, improving by 2 orders of magnitude the sensitivity of conventional enzyme activity assays. The binding of DXS to pyruvate is a 2-step process with dissociation constants of k(off) = 6.1 x 10(-4) +/- 7.5 x 10(-3) and 1.3 x 10(-2) +/- 1.0 x 10(-2) s(-1), and reaction lengths of x(beta) = 3.98 +/- 0.33 and 0.52 +/- 0.23 angstrom. These results constitute the first quantitative report on the use of nanotechnology for the biodiscovery of new antimalarial enzyme inhibitors and open the field for the identification of compounds represented only by a few dozens of molecules in the sensor chamber.

JTD Keywords: Malaria, 2-C-methyl-D-erythritol-4-phosphate pathway, 1-deoxy-D-xylulose 5-phosphate synthase, Pyruvate, Glyceraldehyde-3-phosphate, Drug discovery