by Keyword: Lasers
Garcia-de-Albeniz, N, Ginebra, MP, Jimenez-Piqué, E, Roa, JJ, Mas-Moruno, C, (2024). Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response Dental Materials 40, 139-150
Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response.A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated.The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns.The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
JTD Keywords: abutment material, alumina toughened zirconia, antibacterial, bacterial adhesion, biofilm growth, cell adhesion, dental implants, hydrothermal degradation, implant surfaces, in-vitro, laser patterning, osseointegration, osteogenic differentiation, part 1, surface topography, y-tzp ceramics, Antibacterial, Antibacterials, Bacteria, Bone, Cell adhesion, Cell culture, Cells adhesion, Ceramics, Chemistry, Degradation resistance, Dental implants, Dental material, Dental materials, Dental prostheses, Human, Human mesenchymal stem cells, Humans, Hydrothermal degradation, Laser patterning, Laser surface, Lasers, Low-temperature degradation, Materials testing, Microscopy, electron, scanning, Nanosecond lasers, Osseointegration, Piles, Scanning electron microscopy, Staphylococcus aureus, Stem cells, Surface analysis, Surface damages, Surface properties, Surface property, Surface topography, Topography, Yttrium, Zirconia, Zirconium
de Goede, Michiel, Chang, Lantian, Mu, Jinfeng, Dijkstra, Meindert, Obregón, Raquel, Martínez, Elena, Padilla, Laura, Mitjans, Francesc, Garcia-Blanco, Sonia M., (2019). Al2O3:Yb3+ integrated microdisk laser label-free biosensor Optics Letters 44, (24), 5937-5940
Whispering gallery mode resonator lasers hold the promise of an ultralow intrinsic limit of detection. However, the widespread use of these devices for biosensing applications has been hindered by the complexity and lack of robustness of the proposed configurations. In this work, we demonstrate biosensing with an integrated microdisk laser. Al2O3doped with Yb3+ was utilized because of its low optical losses as well as its emission in the range 1020–1050 nm, outside the absorption band of water. Single-mode laser emission was obtained at a wavelength of 1024 nm with a linewidth of 250 kHz while the microdisk cavity was submerged in water. A limit of detection of 300 pM (3.6 ng/ml) of the protein rhS100A4 in urine was experimentally demonstrated, showing the potential of the proposed devices for biosensing.
JTD Keywords: Distributed feedback lasers, Fiber lasers, Laser modes, Microdisk lasers, Single mode lasers, Tunable lasers
de Goede, M., Dijkstra, M., Obregón, R., Ramón-Azcón, J., Martínez, Elena, Padilla, L., Mitjans, F., Garcia-Blanco, S. M., (2019). Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine Optics Express 27, (13), 18508-18521
Concentrations down to 3 nM of the rhS100A4 protein, associated with human tumor development, have been detected in undiluted urine using an integrated sensor based on microring resonators in the emerging Al2O3 photonic platform. The fabricated microrings were designed for operation in the C-band (λ = 1565 nm) and exhibited a high-quality factor in air of 3.2 × 105. The bulk refractive index sensitivity of the devices was ~100 nm/RIU (for TM polarization) with a limit of detection of ~10−6 RIU. A surface functionalization protocol was developed to allow for the selective binding of the monoclonal antibodies designed to capture the target biomarker to the surface of the Al2O3 microrings. The detection of rhS100A4 proteins at clinically relevant concentrations in urine is a big milestone towards the use of biosensors for the screening and early diagnosis of different cancers. Biosensors based on this microring technology can lead to portable, multiplexed and easy-to-use point of care devices.
JTD Keywords: Distributed feedback lasers, Effective refractive index, Laser coupling, Polarization maintaining fibers, Refractive index, Scanning electron microscopy