by Keyword: Spine
Colom-Cadena, M, Davies, C, Sirisi, S, Lee, JE, Simzer, EM, Tzioras, M, Querol-Vilaseca, M, Sánchez-Aced, E, Chang, YY, Holt, K, McGeachan, RI, Rose, J, Tulloch, J, Wilkins, L, Smith, C, Andrian, T, Belbin, O, Pujals, S, Horrocks, MH, Lleó, A, Spires-Jones, TL, (2023). Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain Neuron 111, 2170-+
In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
JTD Keywords: accumulation, alpha-synuclein, array tomography, cognitive impairment, dendritic spines, mouse model, neurodegeneration, neurons, synapses, Alzheimer, Amyloid-beta, Synapse, Tau
Bosch, M., Castro, J., Sur, M., Hayashi, Y., (2017). Photomarking relocalization technique for correlated two-photon and electron microcopy imaging of single stimulated synapses Synapse Development - Methods and Protocols (Methods in Molecular Biology) (ed. Poulopoulos , A.), Humana Press (New York, USA) 1538, 185-214
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
JTD Keywords: Correlated imaging, DAB, Dendritic spine, Photobranding, Photoetching, Photomarking, Postsynaptic density, Serial-section transmission electron microscopy, Synapse, Time-lapse live two-photon fluorescence microscopy
Blanchard, R., Morin, C., Malandrino, A., Vella, A., Sant, Z., Hellmich, C., (2016). Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics International Journal for Numerical Methods in Biomedical Engineering , 32, (9), e02760
Summary: While in clinical settings, bone mineral density measured by computed tomography (CT) remains the key indicator for bone fracture risk, there is an ongoing quest for more engineering mechanics-based approaches for safety analyses of the skeleton. This calls for determination of suitable material properties from respective CT data, where the traditional approach consists of regression analyses between attenuation-related grey values and mechanical properties. We here present a physics-oriented approach, considering that elasticity and strength of bone tissue originate from the material microstructure and the mechanical properties of its elementary components. Firstly, we reconstruct the linear relation between the clinically accessible grey values making up a CT, and the X-ray attenuation coefficients quantifying the intensity losses from which the image is actually reconstructed. Therefore, we combine X-ray attenuation averaging at different length scales and over different tissues, with recently identified 'universal' composition characteristics of the latter. This gives access to both the normally non-disclosed X-ray energy employed in the CT-device and to in vivo patient-specific and location-specific bone composition variables, such as voxel-specific mass density, as well as collagen and mineral contents. The latter feed an experimentally validated multiscale elastoplastic model based on the hierarchical organization of bone. Corresponding elasticity maps across the organ enter a finite element simulation of a typical load case, and the resulting stress states are increased in a proportional fashion, so as to check the safety against ultimate material failure. In the young patient investigated, even normal physiological loading is probable to already imply plastic events associated with the hydrated mineral crystals in the bone ultrastructure, while the safety factor against failure is still as high as five.
JTD Keywords: Bone, Bone mass density, Continuum micromechanics, Elastoplasticity, Spine, Strength, X-ray physics
Malandrino, Andrea, Pozo, Jose Maria, Castro-Mateos, Isaac, Frangi, Alejandro F., van Rijsbergen, Marc M., Ito, Keita, Wilke, Hans-Joachim, Dao, Tien Tuan, Ho Ba Tho, Marie-Christine, Noailly, Jerome, (2015). On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disc models Frontiers in Bioengineering and Biotechnology 3, (Article 5), 1-15
Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration.
JTD Keywords: Intervertebral Disc Degeneration, Finite element modelling, Lumbar spine, Poroelasticity, Damage model, Subject-specific modelling, Disc cell nutrition
Malandrino, Andrea, Lacroix, Damien, Hellmich, Christian, Ito, Keita, Ferguson, Stephen J., Noailly, J., (2014). The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc Osteoarthritis and Cartilage , 22, (7), 1053-1060
Objective
To investigate the relevance of the human vertebral endplate poromechanics on the fluid and metabolic transport from and to the intervertebral disc (IVD) based on educated estimations of the poromechanical parameter values of the bony endplate (BEP).
Methods
50 micro-models of different BEP samples were generated from μCTs of lumbar vertebrae and allowed direct determination of porosity values. Permeability values were calculated by using the micro-models, through the simulation of permeation via computational fluid dynamics. These educated ranges of porosity and permeability values were used as inputs for mechano-transport simulations to assess their effect on both the distributions of metabolites within an IVD model and the poromechanical calculations within the cartilaginous part of the endplate i.e., the cartilage endplate (CEP).
Results
BEP effective permeability was highly correlated to local variations of porosity (R2 ≈ 0.88). Universal patterns between bone volume fraction and permeability arose from these results and from other experimental data in the literature. These variations in BEP permeability and porosity had negligible effects on the distributions of metabolites within the disc. In the CEP, the variability of the poromechanical properties of the BEP did not affect the predicted consolidation but induced higher fluid velocities.
Conclusions
The present paper provides the first sets of thoroughly identified BEP parameter values that can be further used in patient-specific poromechanical studies. Representing BEP structural changes through variations in poromechanical properties did not affect the diffusion of metabolites. However, attention might be paid to alterations in fluid velocities and cell mechano-sensing within the CEP.
JTD Keywords: Bony endplate, Spine mechanobiology, Intervertebral disc metabolites, Hydraulic Permeability, Bone Porosity, Poromechanics
Noailly, J., Malandrino, A., Galbusera, F., Jin, Zhongmin, (2014). Computational modelling of spinal implants Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System (ed. Jin, Z.), Woodhead Publishing (Cambridge, UK) Biomaterials and Tissues, 447-484
This chapter focuses on the use of the finite element method in the design and exploration of spinal implants. Following an introduction to biomechanical alterations of the spine in disease and to spine finite element modelling, focus is placed on different models developed for spine treatment simulations. Despite the hindrance of working thorough representations of in vivo situations, predictions of load transfer within both the implants and the tissues simulated allow improved interpretations of known clinical outcomes, and permit the educated design of new implants. The potential of probabilistic modelling is also discussed in relation to model validation and patient-specific analyses. Finally, the latest developments in the multiphysical modelling of intervertebral discs are presented, revealing a strong potential for the study of implant-based strategies that aim to restore the functional biophysics of the spine.
JTD Keywords: Spinal implant, Finite element modelling, Spine surgery, Spine biomechanics, Tissue mechanobiology
Malandrino, Andrea, Noailly, Jerome, Lacroix, Damien, (2011). The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes PLoS Computational Biology Plos Computational Biology , 7, (8), 1-12
Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition.
JTD Keywords: Bovine nucleus pulposus, Human anulus fibrosus, Finite-element, Fluid-flow, Hydraulic permeability, Confined compression, Coupled diffusion, Solute transport, Water-content, Lumbar spine