DONATE

Publications

by Keyword: enzyme catalysis

Fraire JC, Prado-Morales C, Aldaz Sagredo A, Caelles AG, Lezcano F, Peetroons X, Bakenecker AC, Di Carlo V, Sánchez S, (2024). Swarms of Enzymatic Nanobots for Efficient Gene Delivery Acs Applied Materials & Interfaces 16, 47192-47205

This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.

JTD Keywords: Animals, Barrier, Cell line, tumor, Dna, Drug delivery, Drug-delivery, Enzyme catalysis, Gene delivery, Gene transfer techniques, Humans, Lactic acid, Mice, Nanobots, Nanoparticles, Pdna, Plasmids, Polyglycolic acid, Polylactic acid-polyglycolic acid copolymer, Swarming, Transfectio, Transfection, Urease, Urinary bladder neoplasms


Fraire, JC, Guix, M, Hortelao, AC, Ruiz-González, N, Bakenecker, AC, Ramezani, P, Hinnekens, C, Sauvage, F, De Smedt, SC, Braeckmans, K, Sánchez, S, (2023). Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery Acs Nano 17, 7180-7193

Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.

JTD Keywords: drug delivery, enzyme catalysis, nanoparticles, swarming, vapor nanobubbles, Drug carriers, Drug delivery, Drug delivery systems, Enzyme catalysis, Hela cells, Humans, Nanomotors, Nanoparticles, Swarming, Vapor nanobubbles


Wang, L, Huang, Y, Xu, H, Chen, S, Chen, H, Lin, Y, Wang, X, Liu, X, Sánchez, S, Huang, X, (2022). Contaminants-fueled laccase-powered Fe3O4@SiO2 nanomotors for synergistical degradation of multiple pollutants Materials Today Chemistry 26, 101059

Although an increasing number of micro/nanomotors have been designed for environmental remediation in the past decade, the construction of contaminants-fueled nanomotors for synergistically degrading multiple pollutants simultaneously remains a challenge. Herein, laccase-powered Fe3O4@silica nanomotors are fabricated, assisted with lipase enzyme for the enhanced degradation of multiple contaminants using the contaminants themselves as fuels. Notably, we demonstrate that representative industrial phenols and polycyclic aromatic pollutants possess the ability of triggering the enhanced Brownian motion of laccase nanomotors (De of 1.16 mu m(2)/s in 220 mu M biphenol A (BPA), 1.40 mu m(2)/s in 375 mu M Congo red (CR)). Additionally, the k(cat) value of lipase-assisted laccase-powered nanomotors increased over 1.4 times, enhancing their Brownian motion, while leading to the efficient degradation of multiple contaminants such as BPA, CR, and triacetin droplets within 40 min, simultaneously. Ultimately, the lipase-assisted laccase nanomotors exhibit great advantages over free laccase, free lipase, lipase nanomotors, or laccase nanomotors in K-m, k(cat), catalytic stability, recycling property, and the degradation efficiency of contaminants. Therefore, our work further broadens the library of enzyme-powered nanomotors and provides deep insights in synergistical enzymatic catalysis, thus paving avenues for environmental remediation based on enzyme-powered micro/nanomotors. (C) 2022 Elsevier Ltd. All rights reserved.

JTD Keywords: core, dye, environmental remediation, enzyme catalysis, hybrid, light, microspheres, motors, pollutants removal, propulsion, removal, self-propulsion, shell, Core, Dye, Environmental remediation, Enzyme catalysis, Hybrid, Light, Micro/nanomotors, Micromotors, Microspheres, Motors, Pollutants removal, Propulsion, Removal, Self-propulsion, Shell


Ma, X., Sánchez, S., (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme Tetrahedron , 73, (33), 4883-4886

Enzyme triggered bio-catalytic reactions convert chemical energy into mechanical force to power micro/nano-machines. Though there have been reports about enzymes powered micro/nano-motors, enzymatic Janus nano-motor smaller than 100 nm has not been reported yet. Here, we prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to the nano-architecture. The nano-motors are chemically powered by the decomposition of H2O2 triggered by the enzyme catalase located at one face of the nanoparticles. The self-propulsion is characterized by dynamic light scattering (DLS) and optical microscopy. The apparent diffusion coefficient was enhanced by 150% compared to their Brownian motion at low H2O2 concentration (i.e. below 3 wt%). Mesoporous nano-motors might serve as active drug delivery nano-systems in future biomedical applications such as intracellular drug delivery.

JTD Keywords: Enzyme catalysis, Janus particles, Mesoporous silica, Nano-motors, Nanomachine, Self-propulsion