by Keyword: wound healing
Choi, H, Kim, B, Jeong, SH, Kim, TY, Kim, DP, Oh, YK, Hahn, SK, (2023). Microalgae-Based Biohybrid Microrobot for Accelerated Diabetic Wound Healing Small 19, 2204617
A variety of wound healing platforms have been proposed to alleviate the hypoxic condition and/or to modulate the immune responses for the treatment of chronic wounds in diabetes. However, these platforms with the passive diffusion of therapeutic agents through the blood clot result in the relatively low delivery efficiency into the deep wound site. Here, a microalgae-based biohybrid microrobot for accelerated diabetic wound healing is developed. The biohybrid microrobot autonomously moves at velocity of 33.3 µm s-1 and generates oxygen for the alleviation of hypoxic condition. In addition, the microrobot efficiently bound with inflammatory chemokines of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) for modulating the immune responses. The enhanced penetration of microrobot is corroborated by measuring fibrin clots in biomimetic wound using microfluidic devices and the enhanced retention of microrobot is confirmed in the real wounded mouse skin tissue. After deposition on the chronic wound in diabetic mice without wound dressing, the wounds treated with microrobots are completely healed after 9 days with the significant decrease of inflammatory cytokines below 31% of the control level and the upregulated angiogenesis above 20 times of CD31+ cells. These results confirm the feasibility of microrobots as a next-generation platform for diabetic wound healing.© 2022 Wiley-VCH GmbH.
JTD Keywords: biohybrid, microrobots, polyions, wound healing, Algae, Biohybrid, Chemokines, Microrobots, Polyions, Wound healing
Rubio-Canalejas, A, Baelo, A, Herbera, S, Blanco-Cabra, N, Vukomanovic, M, Torrents, E, (2022). 3D spatial organization and improved antibiotic treatment of a Pseudomonas aeruginosa-Staphylococcus aureus wound biofilm by nanoparticle enzyme delivery Frontiers In Microbiology 13, 959156
Chronic wounds infected by Pseudomonas aeruginosa and Staphylococcus aureus are a relevant health problem worldwide because these pathogens grow embedded in a network of polysaccharides, proteins, lipids, and extracellular DNA, named biofilm, that hinders the transport of antibiotics and increases their antimicrobial tolerance. It is necessary to investigate therapies that improve the penetrability and efficacy of antibiotics. In this context, our main objectives were to study the relationship between P. aeruginosa and S. aureus and how their relationship can affect the antimicrobial treatment and investigate whether functionalized silver nanoparticles can improve the antibiotic therapy. We used an optimized in vitro wound model that mimics an in vivo wound to co-culture P. aeruginosa and S. aureus biofilm. The in vitro wound biofilm was treated with antimicrobial combinatory therapies composed of antibiotics (gentamycin and ciprofloxacin) and biofilm-dispersing free or silver nanoparticles functionalized with enzymes (alpha-amylase, cellulase, DNase I, or proteinase K) to study their antibiofilm efficacy. The interaction and colocalization of P. aeruginosa and S. aureus in a wound-like biofilm were examined and detailed characterized by confocal and electronic microscopy. We demonstrated that antibiotic monotherapy is inefficient as it differentially affects the two bacterial species in the mixed biofilm, driving P. aeruginosa to overcome S. aureus when using ciprofloxacin and the contrary when using gentamicin. In contrast, dual-antibiotic therapy efficiently reduces both species while maintaining a balanced population. In addition, DNase I nanoparticle treatment had a potent antibiofilm effect, decreasing P. aeruginosa and S. aureus viability to 0.017 and 7.7%, respectively, in combined antibiotics. The results showed that using nanoparticles functionalized with DNase I enhanced the antimicrobial treatment, decreasing the bacterial viability more than using the antibiotics alone. The enzymes alpha-amylase and cellulase showed some antibiofilm effect but were less effective compared to the DNase I treatment. Proteinase K showed insignificant antibiofilm effect. Finally, we proposed a three-dimensional colocalization model consisting of S. aureus aggregates within the biofilm structure, which could be associated with the low efficacy of antibiofilm treatments on bacteria. Thus, designing a clinical treatment that combines antibiofilm enzymes and antibiotics may be essential to eliminating chronic wound infections.
JTD Keywords: antimicrobial therapies, biofilm, chronic infection, nanoparticle, Antimicrobial therapies, Biofilm, Chronic infection, In-vitro, Matrix, Model, Nanoparticle, Wound healing
Hino, N, Matsuda, K, Jikko, Y, Maryu, G, Sakai, K, Imamura, R, Tsukiji, S, Aoki, K, Terai, K, Hirashima, T, Trepat, X, Matsuda, M, (2022). A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration Developmental Cell 57, 2290-2304
Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.Copyright © 2022 Elsevier Inc. All rights reserved.
JTD Keywords: activation, c-met, contact inhibition, focal adhesions, heparan-sulfate, mechanical forces, morphogenesis, rho, stress fibers, Collective cell migration, Erk, Feedback regulation, Fret, Growth-factor receptor, Hgf, Lamellipodia, Leader cell specification, Signal transduction, Traction force, Wound healing
Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256
Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.
JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent
Castaño, O., Pérez-Amodio, S., Navarro, C., Mateos-Timoneda, M.A., Engel, E., (2018). Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms Advanced Drug Delivery Reviews 129, 95-117
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
JTD Keywords: Instructive biomaterials, Skin regeneration, Wound healing, Signalling release, In situ tissue engineering
Navarro, C., Pérez-Amodio, S., Castaño, O., Engel, E., (2018). Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts Nanotechnology 29, (39), 395102
Extracellular calcium has been proved to influence the healing process of injuries and could be used as a novel therapy for skin wound healing. However, a better understanding of its effect, together with a system to obtain a controlled release is needed. In this study, we examined whether the ionic dissolution of the calcium–phosphate-based ormoglass nanoparticles coded SG5 may produce a similar stimulating effect as extracellular calcium (from CaCl2) on rat dermal fibroblast in vitro. Cells were cultured in the presence of medium containing different calcium concentrations, normally ranging from 0.1 to 3.5 mM Ca2+. A concentration of 3.5 mM of CaCl2 increased metabolic activity, in vitro wound closure, matrix metalloproteinases (MMP) activity, collagen synthesis and cytokine expression, and reduced cell contraction capacity. Interestingly, the levels of migration and contraction capacity measured followed a dose-dependent behavior. In addition, media conditioned with SG5 stimulated the same activities as media conditioned with CaCl2, but undesired effects in chronic wound healing such as inflammatory factor expression and MMP activity were reduced compared to the equivalent CaCl2 concentration. In summary, calcium-releasing particles such as SG5 are potential biological-free biostimulators to be applied in dressings for chronic wound healing.
JTD Keywords: Nanomaterials, Cell signaling, Skin wound healing
Manca, M. L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring Biomaterials 71, 100-109
In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications.
JTD Keywords: Cell oxidative stress, Hyaluronic acid/Hyaluronan, Phospholipid vesicles, Polyphenols, Skin inflammation, Wound healing