Staff member publications
Matejcic, M, Trepat, X, (2023). Mechanobiological approaches to synthetic morphogenesis: learning by building Trends In Cell Biology 33, 95-111
Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.Copyright © 2022 Elsevier Ltd. All rights reserved.
JTD Keywords: cell dynamics, elongation, endothelial-cells, epithelium, growth, lumen, mechanical tension, patterns, self-organization, synthetic morphogenesis, tissue folding, tissue mechanics, topological defects, Cell dynamics, Humans, Morphogenesis, Stem-cells, Synthetic morphogenesis, Tissue folding, Tissue mechanics, Tissue shape
Pérez-González, C, Ceada, G, Matejcic, M, Trepat, X, (2022). Digesting the mechanobiology of the intestinal epithelium Current Opinion In Genetics & Development 72, 82-90
The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
JTD Keywords: crypt fission, designer matrices, differentiation, growth, gut, migration, model, scaffold, tissue mechanics, Biophysics, Cell migration, Cell movement, Cell proliferation, Ex vivo study, Human tissue, Intestinal mucosa, Intestine epithelium, Monolayer culture, Organoid, Organoids, Review, Stem-cell, Tension, Traction therapy
Pérez-González, C, Ceada, G, Greco, F, Matejcic, M, Gómez-González, M, Castro, N, Menendez, A, Kale, S, Krndija, D, Clark, AG, Gannavarapu, VR, Alvarez-Varela, A, Roca-Cusachs, P, Batlle, E, Vignjevic, DM, Arroyo, M, Trepat, X, (2021). Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration Nature Cell Biology 23, 745-757
Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium. Perez-Gonzalez et al. explore the mechanical properties of intestinal organoids, and report the existence of distinct mechanical domains and that cells are pulled out of the central crypt along a gradient of increasing tension.
JTD Keywords: Forces, Growth, Gut, Monolayers, Morphogenesis, Reveal, Stem-cells, Tension