by Keyword: Cell interaction

Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166

Wang, ZH, Klingner, A, Magdanz, V, Hoppenreijs, MW, Misra, S, Khalil, ISM, (2023). Flagellar Propulsion of Sperm Cells Against a Time-Periodic Interaction Force Advanced Biology 7, e2200210

Sperm cells undergo complex interactions with external environments, such as a solid-boundary, fluid flow, as well as other cells before arriving at the fertilization site. The interaction with the oviductal epithelium, as a site of sperm storage, is one type of cell-to-cell interaction that serves as a selection mechanism. Abnormal sperm cells with poor swimming performance, the major cause of male infertility, are filtered out by this selection mechanism. In this study, collinear bundles, consisting of two sperm cells, generate propulsive thrusts along opposite directions and allow to observe the influence of cell-to-cell interaction on flagellar wave-patterns. The developed elasto-hydrodynamic model demonstrates that steric and adhesive forces lead to highly symmetrical wave-pattern and reduce the bending amplitude of the propagating wave. It is measured that the free cells exhibit a mean flagellar curvature of 6.4 +/- 3.5 rad mm(-1) and a bending amplitude of 13.8 +/- 2.8 rad mm(-1). After forming the collinear bundle, the mean flagellar curvature and bending amplitude are decreased to 1.8 +/- 1.1 and 9.6 +/- 1.4 rad mm(-1), respectively. This study presents consistent theoretical and experimental results important for understanding the adaptive behavior of sperm cells to the external time-periodic force encountered during sperm-egg interaction.

JTD Keywords: bovine sperm cells, cell-to-cell interaction, flagellar propulsion, Bovine sperm cells, Cell-to-cell interaction, Cilia, Filaments, Flagellar propulsion, Hydrodynamic models, Mechanism, Micro-video, Model, Motility, Thermotaxis, Transformations, Transition

Soler, PMI, Hidalgo, C, Fekete, Z, Zalanyi, L, Khalil, ISM, Yeste, M, Magdanz, V, (2022). Bundle formation of sperm: Influence of environmental factors Frontiers In Endocrinology 13, 957684

Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times.Copyright © 2022 Morcillo i Soler, Hidalgo, Fekete, Zalanyi, Khalil, Yeste and Magdanz.

JTD Keywords: acrosome reaction, adhesion, bundling, capacitation, cell-cell interaction, cooperation, cooperative behaviour, fertilization, mammals, membrane, motility, progesterone, sperm competition, sperm migration, sperm selection, Bovine spermatozoa, Bundling, Cell-cell interaction, Cooperative behaviour, Sperm competition, Sperm migration, Sperm selection, Spermatozoa

Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, J. A., Becerra, J., Samitier, Josep, (2020). The Janus role of adhesion in chondrogenesis International Journal of Molecular Sciences 21, (15), 5269

Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell–cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell–substrate adhesion in the tissue engineering strategies for cartilage repair.

JTD Keywords: Dendrimer, Nanopatterning, RGD, Mesenchymal cell condensation, Cell–cell interactions, YAP, Chondrogenesis