DONATE

Publications

by Keyword: motility

Kechagia, Z, Sáez, P, Gómez-González, M, Canales, B, Viswanadha, S, Zamarbide, M, Andreu, I, Koorman, T, Beedle, AEM, Elosegui-Artola, A, Derksen, PWB, Trepat, X, Arroyo, M, Roca-Cusachs, P, (2023). The laminin-keratin link shields the nucleus from mechanical deformation and signalling Nature Materials 22, 1409-1420

The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.© 2023. The Author(s).

JTD Keywords: actin, cell migration, filaments, force transmission, localization, membrane, motility, proteins, yap, Cell adhesion, Cytoskeleton, Extracellular matrix, Fibronectins, Integrin alpha-6-beta-4, Integrins, Keratins, Laminin


Grolleman, J, van Engeland, NCA, Raza, M, Azimi, S, Conte, V, Sahlgren, CM, Bouten, CVC, (2023). Environmental stiffness restores mechanical homeostasis in vimentin-depleted cells Scientific Reports 13, 18374

Recent experimental evidence indicates a role for the intermediate filament vimentin in regulating cellular mechanical homeostasis, but its precise contribution remains to be discovered. Mechanical homeostasis requires a balanced bi-directional interplay between the cell's microenvironment and the cellular morphological and mechanical state-this balance being regulated via processes of mechanotransduction and mechanoresponse, commonly referred to as mechanoreciprocity. Here, we systematically analyze vimentin-expressing and vimentin-depleted cells in a swatch of in vitro cellular microenvironments varying in stiffness and/or ECM density. We find that vimentin-expressing cells maintain mechanical homeostasis by adapting cellular morphology and mechanics to micromechanical changes in the microenvironment. However, vimentin-depleted cells lose this mechanoresponse ability on short timescales, only to reacquire it on longer time scales. Indeed, we find that the morphology and mechanics of vimentin-depleted cell in stiffened microenvironmental conditions can get restored to the homeostatic levels of vimentin-expressing cells. Additionally, we observed vimentin-depleted cells increasing collagen matrix synthesis and its crosslinking, a phenomenon which is known to increase matrix stiffness, and which we now hypothesize to be a cellular compensation mechanism for the loss of vimentin. Taken together, our findings provide further insight in the regulating role of intermediate filament vimentin in mediating mechanoreciprocity and mechanical homeostasis.© 2023. The Author(s).

JTD Keywords: contributes, dynamics, focal adhesions, forces, mechanotransduction, migration, motility, organization, tissue, Intermediate-filaments


Pallares, ME, Pi-Jauma, I, Fortunato, IC, Grazu, V, Gomez-Gonzalez, M, Roca-Cusachs, P, de la Fuente, JM, Alert, R, Sunyer, R, Casademunt, J, Trepat, X, (2023). Stiffness-dependent active wetting enables optimal collective cell durotaxis Nature Physics 19, 279-289

The directed migration of cellular clusters enables morphogenesis, wound healing and collective cancer invasion. Gradients of substrate stiffness direct the migration of cellular clusters in a process called collective durotaxis, but the underlying mechanisms remain unclear. Here we unveil a connection between collective durotaxis and the wetting properties of cellular clusters. We show that clusters of cancer cells dewet soft substrates and wet stiff ones. At intermediate stiffness-at the crossover from low to high wettability-clusters on uniform-stiffness substrates become maximally motile, and clusters on stiffness gradients exhibit optimal durotaxis. Durotactic velocity increases with cluster size, stiffness gradient and actomyosin activity. We demonstrate this behaviour on substrates coated with the cell-cell adhesion protein E-cadherin and then establish its generality on substrates coated with extracellular matrix. We develop an active wetting model that explains collective durotaxis in terms of a balance between in-plane active traction and tissue contractility and out-of-plane surface tension. Finally, we show that the distribution of cluster displacements has a heavy tail, with infrequent but large cellular hops that contribute to durotactic migration. Our study demonstrates a physical mechanism of collective durotaxis, through both cell-cell and cell-substrate adhesion ligands, based on the wetting properties of active droplets.

JTD Keywords: Adhesion, Dynamics, E-cadherin, Gradient, Migration, Model, Motility, Movements, Rigidity, Substrate stiffness


Zhang, KX, Klingner, A, Le Gars, Y, Misra, S, Magdanz, V, Khalil, ISM, (2023). Locomotion of bovine spermatozoa during the transition from individual cells to bundles Proceedings Of The National Academy Of Sciences Of The United States Of America 120, e2211911120

Various locomotion strategies employed by microorganisms are observed in complex biological environments. Spermatozoa assemble into bundles to improve their swimming efficiency compared to individual cells. However, the dynamic mechanisms for the formation of sperm bundles have not been fully characterized. In this study, we numerically and experimentally investigate the locomotion of spermatozoa during the transition from individual cells to bundles of two cells. Three consecutive dynamic behaviors are found across the course of the transition: hydrodynamic attraction/repulsion, alignment, and synchronization. The hydrodynamic attraction/repulsion depends on the relative orientation and distance between spermatozoa as well as their flagellar wave patterns and phase shift. Once the heads are attached, we find a stable equilibrium of the rotational hydrodynamics resulting in the alignment of the heads. The synchronization results from the combined influence of hydrodynamic and mechanical cell-to-cell interactions. Additionally, we find that the flagellar beat is regulated by the interactions during the bundle formation, whereby spermatozoa can synchronize their beats to enhance their swimming velocity.

JTD Keywords: behavior, cilia, collective locomotion, collective motion, competition, flagellar propulsion, hydrodynamics, motility, propulsion, sperm cooperation, tracking, Collective locomotion, Flagellar propulsion, Flagellar synchronization, Spermatozoa bundle


Wang, ZH, Klingner, A, Magdanz, V, Hoppenreijs, MW, Misra, S, Khalil, ISM, (2023). Flagellar Propulsion of Sperm Cells Against a Time-Periodic Interaction Force Advanced Biology 7, e2200210

Sperm cells undergo complex interactions with external environments, such as a solid-boundary, fluid flow, as well as other cells before arriving at the fertilization site. The interaction with the oviductal epithelium, as a site of sperm storage, is one type of cell-to-cell interaction that serves as a selection mechanism. Abnormal sperm cells with poor swimming performance, the major cause of male infertility, are filtered out by this selection mechanism. In this study, collinear bundles, consisting of two sperm cells, generate propulsive thrusts along opposite directions and allow to observe the influence of cell-to-cell interaction on flagellar wave-patterns. The developed elasto-hydrodynamic model demonstrates that steric and adhesive forces lead to highly symmetrical wave-pattern and reduce the bending amplitude of the propagating wave. It is measured that the free cells exhibit a mean flagellar curvature of 6.4 +/- 3.5 rad mm(-1) and a bending amplitude of 13.8 +/- 2.8 rad mm(-1). After forming the collinear bundle, the mean flagellar curvature and bending amplitude are decreased to 1.8 +/- 1.1 and 9.6 +/- 1.4 rad mm(-1), respectively. This study presents consistent theoretical and experimental results important for understanding the adaptive behavior of sperm cells to the external time-periodic force encountered during sperm-egg interaction.

JTD Keywords: bovine sperm cells, cell-to-cell interaction, flagellar propulsion, Bovine sperm cells, Cell-to-cell interaction, Cilia, Filaments, Flagellar propulsion, Hydrodynamic models, Mechanism, Micro-video, Model, Motility, Thermotaxis, Transformations, Transition


Joseph, A, Wagner, AM, Garay-Sarmiento, M, Aleksanyan, M, Haraszti, T, Söder, D, Georgiev, VN, Dimova, R, Percec, V, Rodriguez-Emmenegger, C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, e2206288

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes


Soler, PMI, Hidalgo, C, Fekete, Z, Zalanyi, L, Khalil, ISM, Yeste, M, Magdanz, V, (2022). Bundle formation of sperm: Influence of environmental factors Frontiers In Endocrinology 13, 957684

Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times.Copyright © 2022 Morcillo i Soler, Hidalgo, Fekete, Zalanyi, Khalil, Yeste and Magdanz.

JTD Keywords: acrosome reaction, adhesion, bundling, capacitation, cell-cell interaction, cooperation, cooperative behaviour, fertilization, mammals, membrane, motility, progesterone, sperm competition, sperm migration, sperm selection, Bovine spermatozoa, Bundling, Cell-cell interaction, Cooperative behaviour, Sperm competition, Sperm migration, Sperm selection, Spermatozoa


Clark, AG, Maitra, A, Jacques, C, Bergert, M, Perez-Gonzalez, C, Simon, A, Lederer, L, Diz-Munoz, A, Trepat, X, Voituriez, R, Vignjevic, DM, (2022). Self-generated gradients steer collective migration on viscoelastic collagen networks Nature Materials 21, 1200-1210

Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.; Cell clusters mechanically reorganize viscoelastic collagen networks, resulting in transient gradients in collagen density, alignment and stiffness that promote spontaneous persistent migration.

JTD Keywords: Cell-migration, Design, Invasion, Limits, Mechanics, Microscopy, Morphogenesis, Motility, Rear, Rigidity


Chattopadhyay, P, Magdanz, V, Hernandez-Melia, M, Borchert, KBL, Schwarz, D, Simmchen, J, (2022). Size-Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception Advanced Nanobiomed Research 2, 2100152

Effective inhibition of sperm motility using a spermicide can be a promising approach in developing non-invasive male contraceptive agents. Copper is known to have contraceptive properties and has been used clinically for decades as intrauterine contraceptive devices (IUDs) for contraception in females. Beyond that, the spermicidal use of copper is not explored much further, even though its use can also subdue the harmful effects caused by the hormonal female contraceptive agents on the environment. Herein, the size, concentration, and time-dependent in vitro inhibition of bovine spermatozoa by copper microparticles are studied. The effectivity in inhibiting sperm motility is correlated with the amount of Cu2+ ions released by the particles during incubation. The copper particles cause direct suppression of sperm motility and viability upon incubation and thereby show potential as sperm-inhibiting, hormone-free candidate for male contraception. In addition, biocompatibility tests using a cervical cell line help optimizing the size and concentration of the copper particles for the best spermicidal action while avoiding toxicity to the surrounding tissue.

JTD Keywords: Bovine spermatozoa, Clinical-trial, Copper, Human-spermatozoa, Ions, Male contraception, Metallic copper, Microparticles, Progestins, Sperm motility, Sperm viability, Spermicide, Viability


Villacampa, EG, Larsson, L, Mirzazadeh, R, Kvastad, L, Andersson, A, Mollbrink, A, Kokaraki, G, Monteil, V, Schultz, N, Appelberg, KS, Montserrat, N, Zhang, HB, Penninger, JM, Miesbach, W, Mirazimi, A, Carlson, J, Lundeberg, J, (2021). Genome-wide spatial expression profiling in formalin-fixed tissues Cell Genom 1, 100065

Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.© 2021 The Authors.

JTD Keywords: colonic transit, gut, intestinal motility, ld score regression, metaanalysis, nervous-system, neurotrophic factor, population, severity, Covid-19, Ffpe, Genome-wide, Irritable-bowel-syndrome, Mouse brain, Organoids, Ovarian carcinosarcoma, Pfa, Sars-cov-2, Spatial transcriptomics, Visium


Chen, Tianchi, Callan-Jones, Andrew, Fedorov, Eduard, Ravasio, Andrea, Brugués, Agustí, Ong, Hui Ting, Toyama, Yusuke, Low, Boon Chuan, Trepat, Xavier, Shemesh, Tom, Voituriez, Raphaël, Ladoux, Benoît, (2019). Large-scale curvature sensing by directional actin flow drives cellular migration mode switching Nature Physics 15, (4), 393-402

Cell migration over heterogeneous substrates during wound healing or morphogenetic processes leads to shape changes driven by different organizations of the actin cytoskeleton and by functional changes including lamellipodial protrusions and contractile actin cables. Cells distinguish between cell-sized positive and negative curvatures in their physical environment by forming protrusions at positive curvatures and actin cables at negative curvatures; however, the cellular mechanisms remain unclear. Here, we report that concave edges promote polarized actin structures with actin flow directed towards the cell edge, in contrast to well-documented retrograde flow at convex edges. Anterograde flow and contractility induce a tension anisotropy gradient. A polarized actin network is formed, accompanied by a local polymerization–depolymerization gradient, together with leading-edge contractile actin cables in the front. These cables extend onto non-adherent regions while still maintaining contact with the substrate through focal adhesions. The contraction and dynamic reorganization of this actin structure allows forward movements enabling cell migration over non-adherent regions on the substrate. These versatile functional structures may help cells sense and navigate their environment by adapting to external geometric and mechanical cues.

JTD Keywords: Biopolymers in vivo, Cellular motility


Campillo, N., Falcones, B., Otero, J., Colina, R., Gozal, D., Navajas, D., Farré, R., Almendros, I., (2019). Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: Novel experimental settingand proof of concept Frontiers in Oncology 9, 43

Hypoxia is a common characteristic of many solid tumors that has been associated with tumor aggressiveness. Limited diffusion of oxygen generates a gradient of oxygen availability from the blood vessel to the interstitial space and may underlie the recruitment of macrophages fostering cancer progression. However, the available data based on the recruitment of circulating cells to the tumor microenvironment has been so far carried out by conventional co-culture systems which ignore the hypoxic gradient between the vessel to the tumor interstitium. Here, we have designed a novel easy-to-build cell culture device that enables evaluation of cellular cross-talk and cell migration while they are being simultaneously exposed to different oxygenation environments. As a proof-of-concept of the potential role of differential oxygenation among interacting cells we have evaluated the activation and recruitment of macrophages in response to hypoxic melanoma, breast, and kidney cancer cells. We found that hypoxic melanoma and breast cancer cells co-cultured with normoxic macrophages enhanced their directional migration. By contrast, hypoxic kidney cells were not able to increase their recruitment. We also identified well-described hypoxia-induced pathways which could contribute in the immune cell recruitment (VEGFA and PTGS2 genes). Moreover, melanoma and breast cancer increased their proliferation. However, oxygenation levels affected neither kidney cancer cell proliferation nor gene expression, which in turn resulted in no significant changes in macrophage migration and polarization. Therefore, the cell culture device presented here provides an excellent opportunity for researchers to reproduce the in vivo hypoxic gradients in solid tumors and to study their role in recruiting circulating cells to the tumor in specific types of cancer.

JTD Keywords: Hypoxia gradient, Macrophage motility, Models of host-tumor interactions, Novel assay technology, Tumor progression


Rodriguez-Franco, P., Brugués, A., Marin-Llaurado, A., Conte, V., Solanas, G., Batlle, E., Fredberg, J. J., Roca-Cusachs, P., Sunyer, R., Trepat, X., (2017). Long-lived force patterns and deformation waves at repulsive epithelial boundaries Nature Materials 16, (10), 1029-1036

For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

JTD Keywords: Biological physics, Cellular motility


Solórzano, Carla, Srikumar, Shabarinath, Canals, Rocío, Juárez, Antonio, Paytubi, Sonia, Madrid, Cristina, (2015). Hha has a defined regulatory role that is not dependent upon H-NS or StpA Frontiers in Microbiology 6, Article 773

The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.

JTD Keywords: Salmonella, Gene regulation, Motility, Pathogenicity island, H-NS, HHA, STPA


Comelles, J., Hortigüela, V., Martínez, Elena, Riveline, D., (2015). Methods for rectifying cell motions in vitro: Breaking symmetry using microfabrication and microfluidics Methods in Cell Biology - Biophysical Methods in Cell Biology (ed. Wilson, L., Tran, P.), Academic Press (Santa Barbara, USA) 125, 437-452

Cell motility is an important phenomenon in cell biology, developmental biology, and cancer. Here we report methods that we designed to identify and characterize external factors which direct cell motions by breaking locally the symmetry. We used microfabrication and microfluidics techniques to impose and combine mechanical and chemical cues to moving fibroblasts. Gradients can thereby be engineered at the cellular scale and this approach has allowed to disentangle roles of the nucleus and protrusion activity in setting cell directions.

JTD Keywords: Adhesion, Biological physics, Cell motility, Gradient, Ratchet