by Keyword: Co2

Sans J, Arnau M, Sanz V, Turon P, Alemán C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433,

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst

Solorzano, A, Eichmann, J, Fernandez, L, Ziems, B, Jimenez-Soto, JM, Marco, S, Fonollosa, J, (2022). Early fire detection based on gas sensor arrays: Multivariate calibration and validation Sensors And Actuators B-Chemical 352,

Smoldering fires are characterized by the production of early gas emissions that can include high levels of CO and Volatile Organic Compounds (VOCs) due to pyrolysis or thermal degradation. Nowadays, standalone CO sensors, smoke detectors, or a combination of these, are standard components for fire alarm systems. While gas sensor arrays together with pattern recognition techniques are a valuable alternative for early fire detection, in practice they have certain drawbacks-they can detect early gas emissions, but can show low immunity to nuisances, and sensor time drift can render calibration models obsolete. In this work, we explore the performance of a gas sensor array for detecting smoldering and plastic fires while ensuring the rejection of a set of nuisances. We conducted variety of fire and nuisance experiments in a validated standard fire room (240 m(3)). Using PLS-DA and SVM, we evaluate the performance of different multivariate calibration models for this dataset. We show that calibration models remain predictive after several months, but perfect performance is not achieved. For example, 4 months after calibration, a PLS-DA model provides 100% specificity and 85% sensitivity since the system has difficulties in detecting plastic fires, whose signatures are close to nuisance scenarios. Nevertheless, our results show that systems based on gas sensor arrays are able to provide faster fire alarm response than conventional smoke-based fire alarms. We also propose the use of small-scale fire experiments to increase the number of calibration conditions at a reduced cost. Our results show that this is an effective way to increase the performance of the model, even when evaluated on a standard fire room. Finally, the acquired datasets are made publicly available to the community (doi: 10.5281/zenodo.5643074).

JTD Keywords: Calibration, Chemical sensors, Co2, Early fire, Early fire detection, En-54, Fire alarm, Fire detection, Fire room, Fires, Gas detectors, Gas emissions, Gas sensors, Pattern recognition, Public dataset, Sensor arrays, Sensors array, Signatures, Smoke, Smoke detector, Smoke detectors, Standard fire, Standard fire room, Support vector machines, Temperature, Toxicity, Volatile organic compounds

Sans, Jordi, Sanz, Vanesa, Turon, Pau, Alemán, Carlos, (2021). Enhanced CO2 Conversion into Ethanol by Permanently Polarized Hydroxyapatite through C-C Coupling Chemcatchem 13, 5025-5033