DONATE

Publications

by Keyword: Driven

Noguchi, H, Walani, N, Arroyo, M, (2023). Estimation of anisotropic bending rigidities and spontaneous curvatures of crescent curvature-inducing proteins from tethered-vesicle experimental data Soft Matter 19, 5300-5310

The Bin/amphiphysin/Rvs (BAR) superfamily proteins have a crescent binding domain and bend biomembranes along the domain axis. However, their anisotropic bending rigidities and spontaneous curvatures have not been experimentally determined. Here, we estimated these values from the bound protein densities on tethered vesicles using a mean-field theory of anisotropic bending energy and orientation-dependent excluded volume. The dependence curves of the protein density on the membrane curvature are fitted to the experimental data for the I-BAR and N-BAR domains reported by C. Prevost et al. Nat. Commun., 2015, 6, 8529 and F.-C. Tsai et al. Soft Matter, 2021, 17, 4254-4265, respectively. For the I-BAR domain, all three density curves of different chemical potentials exhibit excellent fits with a single parameter set of anisotropic bending energy. When the classical isotropic bending energy is used instead, one of the curves can be fitted well, but the others exhibit large deviations. In contrast, for the N-BAR domain, two curves are not well fitted simultaneously the anisotropic model, although it is significantly improved compared to the isotropic model. This deviation likely suggests a cluster formation of the N-BAR domains.

JTD Keywords: Membrane-mediated interactions,elastic properties,bar,shape,mechanisms,inclusions,generation,polymers,driven,bod


Middelhoek, KINA, Magdanz, V, Abelmann, L, Khalil, ISM, (2022). Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging Biomedical Materials 17, 65001

Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into three-dimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted therapy. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound images at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 h. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.

JTD Keywords: drug delivery, magnetic actuation, microrobot aggregation, sperm, Driven, Drug delivery, Magnetic actuation, Magnetotactic bacteria, Microrobot aggregation, Microrobots, Motion, Movement, Propulsion, Sperm, Sphere, Ultrasound, Wall


Lozano-Garcia, M, Estrada-Petrocelli, L, Blanco-Almazan, D, Tas, B, Cho, PSP, Moxham, J, Rafferty, GF, Torres, A, Jane, R, Jolley, CJ, (2022). Noninvasive Assessment of Neuromechanical and Neuroventilatory Coupling in COPD Ieee Journal Of Biomedical And Health Informatics 26, 3385-3396

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice. Author

JTD Keywords: biomedical measurement, chronic obstructive pulmonary disease, couplings, diaphragm, disease severity, efficiency, electromyography, exacerbations, healthy volunteers, inspiratory muscles, loading, mechanomyography, obstructive pulmonary-disease, pressure measurement, protocols, respiratory mechanics, respiratory muscles, responsiveness, spirometry, stimulation, volume measurement, At rests, Biomedical measurement, Biomedical measurements, Chronic obstructive pulmonary disease, Couplings, Disease severity, Efficiency ratio, Electromyography, Healthy subjects, Healthy volunteers, Loading, Mechanical efficiency, Mechanomyogram, Muscle, Muscles, Neural respiratory drive, Noninvasive medical procedures, Pressure measurement, Protocols, Pulmonary diseases, Surface electromyogram, Volume measurement


Noguchi, H, Tozzi, C, Arroyo, M, (2022). Binding of anisotropic curvature-inducing proteins onto membrane tubes Soft Matter 18, 3384-3394

We studied how anisotropic proteins are orientationally ordered and change the radius of membrane tubes using mean-field theory with an orientation-dependent excluded volume interaction.

JTD Keywords: bar, density, driven, generation, inclusions, invagination, mechanisms, monte-carlo, tubulation, Mediated aggregation


Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5, 2100279

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

JTD Keywords: eukaryotic cells, label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Microscopy, atomic force, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks


De Corato, M., Pagonabarraga, I., Abdelmohsen, L. K. E. A., Sánchez, S., Arroyo, M., (2020). Spontaneous polarization and locomotion of an active particle with surface-mobile enzymes Physical Review Fluids 5, (12), 122001

We examine a mechanism of locomotion of active particles whose surface is uniformly coated with mobile enzymes. The enzymes catalyze a reaction that drives phoretic flows but their homogeneous distribution forbids locomotion by symmetry. We find that the ability of the enzymes to migrate over the surface combined with self-phoresis can lead to a spontaneous symmetry-breaking instability whereby the homogeneous distribution of enzymes polarizes and the particle propels. The instability is driven by the advection of enzymes by the phoretic flows and occurs above a critical Péclet number. The transition to polarized motile states occurs via a supercritical or subcritical pitchfork bifurcations, the latter of which enables hysteresis and coexistence of uniform and polarized states.

JTD Keywords: Biomimetic & bio-inspired materials, Locomotion, Surface-driven phase separation