by Keyword: Enzyme catalysis
Wang, L, Huang, Y, Xu, H, Chen, S, Chen, H, Lin, Y, Wang, X, Liu, X, Sanchez, S, Huang, X, (2022). Contaminants-fueled laccase-powered Fe3O4@SiO2 nanomotors for synergistical degradation of multiple pollutants Materials Today Chemistry 26, 101059
Although an increasing number of micro/nanomotors have been designed for environmental remediation in the past decade, the construction of contaminants-fueled nanomotors for synergistically degrading multiple pollutants simultaneously remains a challenge. Herein, laccase-powered Fe3O4@silica nanomotors are fabricated, assisted with lipase enzyme for the enhanced degradation of multiple contaminants using the contaminants themselves as fuels. Notably, we demonstrate that representative industrial phenols and polycyclic aromatic pollutants possess the ability of triggering the enhanced Brownian motion of laccase nanomotors (De of 1.16 mu m(2)/s in 220 mu M biphenol A (BPA), 1.40 mu m(2)/s in 375 mu M Congo red (CR)). Additionally, the k(cat) value of lipase-assisted laccase-powered nanomotors increased over 1.4 times, enhancing their Brownian motion, while leading to the efficient degradation of multiple contaminants such as BPA, CR, and triacetin droplets within 40 min, simultaneously. Ultimately, the lipase-assisted laccase nanomotors exhibit great advantages over free laccase, free lipase, lipase nanomotors, or laccase nanomotors in K-m, k(cat), catalytic stability, recycling property, and the degradation efficiency of contaminants. Therefore, our work further broadens the library of enzyme-powered nanomotors and provides deep insights in synergistical enzymatic catalysis, thus paving avenues for environmental remediation based on enzyme-powered micro/nanomotors. (C) 2022 Elsevier Ltd. All rights reserved.
JTD Keywords: core, dye, environmental remediation, enzyme catalysis, hybrid, light, pollutants removal, propulsion, removal, self-propulsion, shell, Core, Dye, Environmental remediation, Enzyme catalysis, Hybrid, Light, Micro/nanomotors, Micromotors, Microspheres, Motors, Pollutants removal, Propulsion, Removal, Self-propulsion, Shell
Ma, X., Sánchez, S., (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme
Tetrahedron , 73, (33), 4883-4886
Enzyme triggered bio-catalytic reactions convert chemical energy into mechanical force to power micro/nano-machines. Though there have been reports about enzymes powered micro/nano-motors, enzymatic Janus nano-motor smaller than 100 nm has not been reported yet. Here, we prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to the nano-architecture. The nano-motors are chemically powered by the decomposition of H2O2 triggered by the enzyme catalase located at one face of the nanoparticles. The self-propulsion is characterized by dynamic light scattering (DLS) and optical microscopy. The apparent diffusion coefficient was enhanced by 150% compared to their Brownian motion at low H2O2 concentration (i.e. below 3 wt%). Mesoporous nano-motors might serve as active drug delivery nano-systems in future biomedical applications such as intracellular drug delivery.
JTD Keywords: Enzyme catalysis, Janus particles, Mesoporous silica, Nano-motors, Nanomachine, Self-propulsion