DONATE

Publications

by Keyword: Fixation

Arnau, Marc, Sans, Jordi, Tamarit, Josep Lluis, Romanini, Michela, Turon, Pau, Aleman, Carlos, (2024). Unraveling Thermal Depolarization Phenomena in Biphasic Polarized Calcium Phosphate Catalyst Advanced Materials Interfaces , 2400422

Permanently polarized biphasic calcium phosphate composed of hydroxyapatite and brushite (pp-HAp/Bru), which is prepared by applying the thermally stimulated polarization treatment to calcined HAp, is used as a sustainable catalyst to transform CO2 into value-added products. In this work, the stability of pp-HAp/Bru is studied from structural, electrical, and catalytic perspectives, applying a thermal depolarization process with temperatures (T-d) ranging from 200 to 1000 degrees C. Results show that the Bru phase is not stable when T-d = 600 degrees C. Besides, the electrical resistance and capacitance of the pp-HAp/Bru increase with T-d, evidencing the progressive electrical depolarization of the material. Thermal depolarization also influences the specific orientation of the OH- ions, which is partially lost (approximate to 50%). All such changes affect the catalytic efficiency of pp-HAp/Bru, which is proven using a reaction that transforms CO2 gas into acetic acid and formic acid. Results show that the total reaction yield linearly decreases with increasing T-d. Based on such observations, a simple process is designed that allows the reconstitution of the structure and restores the activity of such green catalysts.

JTD Keywords: Co-2 fixation, Electrical depolarization, Green catalysts, Interface stability, Thermal depolarizatio


Arnau, Marc, Sans, Jordi, Gallego, Eva, Peraales, Jose Francisco, Turon, Pau, Aleman, Carlos, (2024). Polarized hydroxyapatite, a ceramic nanocatalyst to convert automotive carbon emissions into ethanol Journal Of Environmental Chemical Engineering 12, 112255

This paper is aimed to develop ultrananoporous polarized hydroxyapatite (HAp) catalyst and evaluate its per-formance in transforming CO2 into useable ethanol considering three different scenarios: 1) a batch reaction using a mixture of CO2 and CH4 as feeding gas; 2) a batch reaction using as reactant exhaust gases captured from the fumes of diesel vehicles; and 3) a continuous flow reaction using pure CO2 as feeding gas. Ultrananoporous HAp scaffolds were prepared using a four-step process: 1) as prepared HAp powder was mixed with 60% wt. of a commercial hydrogel at low-temperature; 2) the resulting paste was shaped at low temperature to reduce the adhesion between the metallic tools and the mixture, enhancing the homogeneity of the sample; 3) the shaped paste was calcined in air by applying 1000 oC during 2 h to eliminate the hydrogel; and 4) an external DC electric field of 3 kV/cm was imposed at 1000 oC during 1 h to the calcined scaffold. The resulting polarized scaffolds both ultrananoporosity and catalytic activation. Thus, the mass: volume ratio of the ultrananoporous catalyst was much lower than that of conventional HAp catalyst (718 vs 5093 g/L. Furthermore, the ethanol yield was much higher (up to a factor of x21.4) for the ultrananoporous catalyst than for the compact one, allowing us to conclude that ultrananoporous polarized HAp catalyst is a promising technology for transforming CO2 into valuable chemical products from highly polluted gases, especially those coming from road, sea and air transport.

JTD Keywords: A: ceramics, Air pollution, Automotives, Batch reactions, Calcination, Carbon, Carbon dioxide, Co2 fixation, Co2 reduction, Desig, Electric fields, Environmental process, Ethanol, Exhaust gases, Feeding gas, Fumes, Hydrogels, Hydroxyapatite, Lows-temperatures, Nano-catalyst, Nanocatalysts, Polarized catalys, Polarized catalyst, Scaffolds, Temperature, ]+ catalyst


Sans, Jordi, Arnau, Marc, Bosque, Ricard, Turon, Pau, Aleman, Carlos, (2024). Synthesis of urea from CO2 and N2 fixation under mild conditions using polarized hydroxyapatite as a catalyst Sustainable Energy & Fuels 8, 1473-1482

Polarized hydroxyapatite (p-HAp) has been used as a catalyst for the synthesis of urea coupling N-2, CO2 and water under mild reaction conditions when compared to classical nitrogen fixation reactions, such as the Haber-Bosch process. The reaction of 3 bar of N-2 and 3 bar of CO2 under UV illumination at 120 degrees C (for 48 h) results in a urea yield of 1.5 +/- 0.1 mmol per gram of catalyst (g(c)) with a selectivity close to 80%, whereas the reaction is not successful without UV irradiation. However, the addition of small amounts of NO (314 ppm) produces 15.2 +/- 0.6 and 4.6 +/- 0.4 mmol g(c)(-1) with and without UV illumination, respectively, with the selectivity in both cases being close to 100%. As nitrogen fixation without UV irradiation using p-HAp as a catalyst is a challenge, studies with NO have been conducted varying the reaction conditions (time, pressure and temperature). The results suggest a mechanism based on the production of NH4+ through the oxidation of N-2.

JTD Keywords: Carbon dioxide, Carbon,dinitrogen,reduction,nitrogen,ammonia,dioxid, Catalyst selectivity, Condition, Haber-bosch process, Hydroxyapatite, Irradiation, Metabolism, Mild reaction conditions, Nitrogen fixation, Pressure and temperature, Reaction conditions, Time pressures, Time-temperature, Urea, Uv illuminations, Without uv irradiations, ]+ catalyst


Sans, J, Arnau, M, Sanz, V, Turon, P, Aleman, C, (2022). Fine-tuning of polarized hydroxyapatite for the catalytic conversion of dinitrogen to ammonium under mild conditions Chemical Engineering Journal 446, 137440

Polarized hydroxyapatite (p-HAp), a calcium phosphate catalyst obtained at high temperature under intense electric field, has been used for the synthesis of ammonium starting from N2 and liquid water at low pressure (<6 bar) and temperatures below 120 C. The success of the nitrogen fixation process has been demonstrated by isotope labelling experiments using 15N2. Considering the optimal reaction conditions for the production of ammonium, the yield is as high as 154.6 +/- 25.8 mu mol/g of catalyst. The proposed synthesis exhibits three important advantages for its utilization in green chemistry environmental processes related to the recycling of polluted air. These are: i) the catalysts converts CO2 into valuable chemical products in addition of transforming N2 in ammonium; ii) the final energy balance is very favorable since no external electrical field is necessary to promote nitrogen and carbon fixation reactions; and iii) products are easily transferred to water favoring their extraction and avoiding the saturation of the catalyst.

JTD Keywords: Adsorbed nitrogen, Air pollution, Amino-acids, Electrophotosynthesis, Environmental process, Facile synthesis, Fixation, Functionalization, Hydroxyapatite, Nitride, Nitrogen reduction, Polarized catalyst


Sans, J, Arnau, M, Roa, JJ, Turon, P, Alernan, C, (2022). Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis Acs Applied Nano Materials 5, 8526-8536

Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N-2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N-2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.

JTD Keywords: Amino acids, Amino-acids, Ammonium production, Bone, Carbon fixation, Composites, Constitutive phases, Decarbonization, Dinitrogen, Ditrogen fixation, Elastic-modulus, Electrophotosynthesis, Ethanol production, Hardness, Indentation, Nanoindentation, Pluronic hydrogel, Polarized hydroxyapatite


Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433, 133512

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst


Sans, J, Sanz, V, del Valle, LJ, Puiggali, J, Turon, P, Aleman, C, (2021). Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal Of Catalysis 397, 98-107

The enhanced catalytic activity of permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, largely depends on both the experimental conditions used to prepare crystalline hydroxyapatite from its calcium and phosphate precursors and the polarization process parameters. A mineral similar to brushite, which is an apatitic phase that can evolve to hydroxyapatite, is found at the surface of highly crystalline hydroxyapatite. It appears after chemical precipitation and hydrothermal treatment performed at 150 degrees C for 24 h followed by a sinterization at 1000 degrees C and a polarization treatment by applying a voltage of 500 Vat high temperature. Both the high crystallinity and the presence of brushite-like phase on the electrophotocatalyst affect the nitrogen and carbon fixation under mild reaction conditions (95 degrees C and 6 bar) and the synthesis of glycine and alanine from a simple gas mixture containing N-2, CO2, CH4 and H2O. Thus, the Gly/Ala ratio can be customized by controlling the presence of brushite on the surface of the catalyst, enabling to develop new strategies to regulate the production of amino acids by nitrogen and carbon fixation. (C) 2021 Elsevier Inc. All rights reserved.

JTD Keywords: Amino acids, Brushite, Carbon, Carbon dioxide fixation, Catalyst activity, Catalytic apatites, Chemical precipitation, Crystalline hydroxyapatite, Crystallinity, Decomposition, Enhanced catalytic activity, Experimental conditions, Heterogeneous catalysis, High crystallinity, Hydrothermal synthesis, Hydrothermal treatments, Hydroxyapatite, Lactic-acid, Mild reaction conditions, Molecular nitrogen fixation, Nitrogen, Nitrogen fixation, Phosphate, Polarization, Precipitation (chemical), Process parameters, Thermally stimulated polarization


Revilla-López, G., Sans, J., Casanovas, J., Bertran, O., Puiggalí, J., Turon, P., Alemán, C., (2020). Analysis of nitrogen fixation by a catalyst capable of transforming N2, CO2 and CH4 into amino acids under mild reactions conditions Applied Catalysis A: General 596, 117526

The processes related to the fixation of nitrogen in a catalyst able to produce glycine and alanine from a N2, CO2 and CH4 gas mixture at mild reaction conditions have been studied by combining experimental and theoretical investigations. Results have allowed to understand the role of different elements of the catalyst, which is constituted by permanently polarized hydroxyapatite (p-HAp), zirconia, and aminotris(methylenephosphonic acid) (ATMP). ATMP attracts N2 molecules towards the surface, maintaining them close to the zirconia and p-HAp components that are the most active from a catalytic point of view. On the other hand, the associative mechanism is thermodynamically favoured under mild reaction conditions with respect to the dissociative one, which is limited by the barrier associated to the Nsingle bondN bond cleavage. Because this reaction mechanism is similar to that employed in the nitrogen fixation by nitrogenase enzymes, these findings provide an opportunity to design new bioinspired catalysts.

JTD Keywords: Artificial photosynthesis, Carbon fixation, Hydroxyapatite, N[sbnd]N bond cleavage


Sans, J., Armelin, E., Sanz, V., Puiggalí, J., Turon, P., Alemán, C., (2020). Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal of Catalysis 389, 646-656

The electrophotocatalytic synthesis of Glycine and Alanine from a simple gas mixture containing N2, CO2, CH4 and H2O under mild reaction conditions (95 °C and 6 bar) was recently developed using a catalyst formed by permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, coated with two layers of aminotris(methylenephosphonic acid) (ATMP) separated by an intermediate layer of zirconyl chloride (ZC). This work reports the optimization of the ATMP- and ZC-coating content by examining the influence of their concentration of each component in each layer on the structural and electrochemical properties of the catalyst. After exhaustive analyses, such properties have been related with the efficiency of the catalysts prepared using different ATMP- and ZC-concentrations to yield Gly and Ala amino acids by fixing nitrogen from N2 and carbon from CO2 and CH4. Results show that, although the concentrations of ATMP and ZC in the first and the intermediate layers are important, the third layer plays a predominant role as is responsible of the apparition of supramolecular structures on the surface and the capacitive behavior of the coating

JTD Keywords: Carbon dioxide fixation, Electrocatalyst, Heterogeneous catalysis, Phosphonic acid, Photocatalyst, Polarized hydroxyapatite, Surface chemistry, Zirconyl chloride


Carrera, I., Gelber, P. E., Chary, G., González-Ballester, M. A., Monllau, J. C., Noailly, J., (2016). Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration International Orthopaedics , 40, (10), 2163-2169

Purpose: To assess, with finite element (FE) calculations, whether immediate weight bearing would be possible after surgical stabilization either with cannulated screws or with a locking plate in a split fracture of the lateral tibial plateau (LTP). Methods: A split fracture of the LTP was recreated in a FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. A split fracture of the lateral tibial plateau was reproduced by using geometrical data from patient radiographs. A locking screw plate (LP) and a cannulated screw (CS) systems were modelled to virtually reduce the fracture and 80 kg static body-weight was simulated. Results: While the simulated body-weight led to clinically acceptable interfragmentary motion, possible traumatic bone shear stresses were predicted nearby the cannulated screws. With a maximum estimation of about 1.7 MPa maximum bone shear stresses, the Polyax system might ensure more reasonable safety margins. Conclusions: Split fractures of the LTP fixed either with locking screw plate or cannulated screws showed no clinically relevant IFM in a FE model. The locking screw plate showed higher mechanical stability than cannulated screw fixation. The locking screw plate might also allow full or at least partial weight bearing under static posture at time zero.

JTD Keywords: Bone fixation, Finite element, Fracture fixation, Interfragmentary motion, Tibial plateau fractures, Weight bearing