by Keyword: Length

Gregori-Pla C, Zirak P, Cotta G, Bramon P, Blanco I, Serra I, Mola A, Fortuna A, Solà-Soler J, Giraldo Giraldo BF, Durduran T, Mayos M, (2023). How does obstructive sleep apnea alter cerebral hemodynamics? Sleep 46, zsad122-zsad122

We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography.Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed.We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001).Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.© The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society.

JTD Keywords: cerebral hemodynamics, desaturation, diffuse correlation spectroscopy, duration, hypopnea, hypoxemia, near-infrared spectroscopy, optical pathlength, oxygenation, severity, sleep disorder, spectroscopy, tissue, Blood-flow, Cerebral hemodynamics, Diffuse correlation spectroscopy, Near-infrared spectroscopy, Obstructive sleep apnea, Sleep disorder

Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P, (2022). Donor-Acceptor Stenhouse Adduct Displaying Reversible Photoswitching in Water and Neuronal Activity Journal Of The American Chemical Society 144, 15595-15602

The interest in the photochromism and functional applications of donor-acceptor Stenhouse adducts (DASAs) soared in recent years owing to their outstanding advantages and flexible design. However, their low solubility and irreversible conversion in aqueous solutions hampered exploring DASAs for biology and medicine. It is notably unknown whether the barbiturate electron acceptor group retains the pharmacological activity of drugs such as phenobarbital, which targets γ-aminobutyric acid (GABA)-type A receptors (GABAARs) in the brain. Here, we have developed the model compound DASA-barbital based on a scaffold of red-switching second-generation DASAs, and we demonstrate that it is active in GABAARs and alters the neuronal firing rate in a physiological medium at neutral pH. DASA-barbital can also be reversibly photoswitched in acidic aqueous solutions using cyclodextrin, an approved ingredient of drug formulations. These findings clarify the path toward the biological applications of DASAs and to exploit the versatility displayed in polymers and materials science.

JTD Keywords: behavior, receptor, visible-light, wavelength, Optical control

Duro-Castano, Aroa, Rodríguez-Arco, Laura, Ruiz-Pérez, Lorena, De Pace, Cesare, Marchello, Gabriele, Noble-Jesus, Carlos, Battaglia, Giuseppe, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle

Andrian, T, Pujals, S, Albertazzi, L, (2021). Quantifying the effect of PEG architecture on nanoparticle ligand availability using DNA-PAINT Nanoscale Advances 3, 6876-6881

The importance of PEG architecture on nanoparticle (NP) functionality is known but still difficult to investigate, especially at a single particle level. Here, we apply DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT), a super-resolution microscopy (SRM) technique, to study the surface functionality in poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs with different PEG structures. We demonstrated how the length of the PEG spacer can influence the accessibility of surface chemical functionality, highlighting the importance of SRM techniques to support the rational design of functionalized NPs.

JTD Keywords: chain-length, density, plga, surface, systems, Chain-length, Density, Dna, Microscopy technique, Nanoparticles, Nanoscale topography, Paint, Peg spacers, Plga, Poly lactide-co-glycolide, Poly-lactide-co-glycolide, Polyethylene glycols, Polylactide-co-glycolide, Single-particle, Super-resolution microscopy, Superresolution microscopy, Surface, Surface chemicals, Surface functionalities, Systems

Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2012). AFM-based force-clamp monitors lipid bilayer failure kinetics Langmuir 28, (15), 6403-6410

The lipid bilayer rupture phenomenon is here explored by means of atomic force microscopy (AFM)-based force clamp, for the first time to our knowledge, to evaluate how lipid membranes respond when compressed under an external constant force, in the range of nanonewtons. Using this method, we were able to directly quantify the kinetics of the membrane rupture event and the associated energy barriers, for both single supported bilayers and multibilayers, in contradistinction to the classic studies performed at constant velocity. Moreover, the affected area of the membrane during the rupture process was calculated using an elastic deformation model. The elucidated information not only contributes to a better understanding of such relevant process, but also proves the suitability of AFM-based force clamp to study model structures as lipid bilayers. These findings on the kinetics of lipid bilayers rupture could be extended and applied to the study of other molecular thin films. Furthermore, systems of higher complexity such as models mimicking cell membranes could be studied by means of AFM-based force-clamp technique.

JTD Keywords: Chain-Length, Spectroscopy, Nanomechanics, Microscopy, Elasticity, Stability, Membranes, Reveals, Fusion, Ions

Diez-Perez, Ismael, Hihath, Joshua, Hines, Thomas, Wang, Zhong-Sheng, Zhou, Gang, Mullen, Klaus, Tao, Nongjian, (2011). Controlling single-molecule conductance through lateral coupling of [pi] orbitals Nature Nanotechnology , 6, (4), 226-231

In recent years, various single-molecule electronic components have been demonstrated(1). However, it remains difficult to predict accurately the conductance of a single molecule and to control the lateral coupling between the pi orbitals of the molecule and the orbitals of the electrodes attached to it. This lateral coupling is well known to cause broadening and shifting of the energy levels of the molecule; this, in turn, is expected to greatly modify the conductance of an electrodemolecule- electrode junction(2-6). Here, we demonstrate a new method, based on lateral coupling, to mechanically and reversibly control the conductance of a single-molecule junction by mechanically modulating the angle between a single pentaphenylene molecule bridged between two metal electrodes. Changing the angle of the molecule from a highly tilted state to an orientation nearly perpendicular to the electrodes changes the conductance by an order of magnitude, which is in qualitative agreement with theoretical models of molecular pi-orbital coupling to a metal electrode. The lateral coupling is also directly measured by applying a fast mechanical perturbation in the horizontal plane, thus ruling out changes in the contact geometry or molecular conformation as the source for the conductance change.

JTD Keywords: Junction conductance, Electron-transport, Interface, Dependence, Mechanism, Length

Artés, Juan M., Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2011). Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy ACS Nano 5, (3), 2060-2066

We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current-distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

JTD Keywords: Long-range electron transfer (LRET), Distance decay constant, Single-molecule electrochemistry, Redox enzyme, Metalloprotein, Blue copper protein, Azurin, Electrochemical scanning tunneling microscopy and spectroscopy, Nanoelectrodes, Debye length, Electrochemical charge screening

Garcia-Manyes, S., Redondo-Morata, L., Oncins, G., Sanz, F., (2010). Nanomechanics of lipid bilayers: Heads or tails? Journal of the American Chemical Society American Chemical Society 132, (37), 12874-12886

Understanding the effect of mechanical stress on membranes is of primary importance in biophysics. Here we use force spectroscopy AFM to quantitatively characterize the nanomechanical stability of supported lipid bilayers as a function of their chemical composition. The onset of plastic deformation reveals itself as a repetitive jump in the approaching force curve, which represents a molecular fingerprint for the bilayer mechanical stability. By systematically probing a set of chemically distinct supported lipid bilayers (SLBs), we first show that both the headgroup and tail have a decisive effect on their mechanical properties. While the mechanical stability of the probed SLBs linearly increases by 3.3 nN upon the introduction of each additional -CH2- in the chain, it exhibits a significant dependence on the phospholipid headgroup, ranging from 3 nN for DPPA to 66 nN for DPPG. Furthermore, we also quantify the reduction of the membrane mechanical stability as a function of the number of unsaturations and molecular branching in the chemical structure of the apolar tails. Finally, we demonstrate that, upon introduction of cholesterol and ergosterol, contrary to previous belief the mechanical stability of membranes not only increases linearly in the liquid phase (DLPC) but also for phospholipids present in the gel phase (DPPC). Our results are discussed in the framework of the continuum nucleation model. This work highlights the compelling effect of subtle variations in the chemical structure of phospholipid molecules on the membrane response when exposed to mechanical forces, a mechanism of common occurrence in nature.

JTD Keywords: Atomic-force microscopy, Molecular-dynamics simulation, Aqueous-electrolyte solutions, Supported planar membranes, Phospholipid-bilayers, Biological-membranes, Physical-properties, Fluid membranes, Model membranes, Chain-length

Oncins, G., Torrent-Burgues, J., Sanz, F., (2008). Nanomechanical properties of arachidic acid Langmuir-Blodgett films Journal of Physical Chemistry C 112, (6), 1967-1974

The nanomechanical properties of Langmuir-Blodgett monolayers of arachidic acid extracted at surface pressures of 1, 15, and 35 mN/m and deposited on mica were investigated by atomic force microscopy, force spectroscopy, and lateral force microscopy. It was experimentally demonstrated that the arachidic acid molecular orientation depends on the extraction pressure. According to this, tilting angles of 50, 34, and 22 degrees with respect to the surface perpendicular were detected and identified as conformations that maximize van der Waals interactions between the arachidic acid alkyl chains. The vertical force needed to puncture the monolayers with the AFM tip strongly depends on the molecular tilting angles attained at different monolayer extraction surface pressures, obtaining values that range from 13.07 +/- 3.24 nN for 50 degrees to 22.94 +/- 5.49 nN for 22 degrees tilting angles. The different molecular interactions involved in the monolayer cohesion are discussed and quantitatively related to the experimental monolayer breakthrough forces. The friction measurements performed from low vertical forces up to monolayer disruption reveal the existence of three well-defined regimes: first, a low friction response due to the elastic deformation of the monolayer, which is followed by a sharp increase in the friction force due to the onset of a sudden plastic deformation. The last regime corresponds to the monolayer rupture and the contact between tip and substrate. The friction coefficient of the substrate is seen to depend on the monolayer extraction pressure, a fact that is discussed in terms of the relationship between the sample compactness and its rupture mechanism.

JTD Keywords: AFM, SAM, Reflection-absortion spectroscopy, Lipid-bilayers, Frictional-properies, Molecular-structure, Thermal behavior, Nanometer-scale, Chain-length, LB films