DONATE

Publications

by Keyword: Organ-on-a-chip

Mughal, S, Lopez-Munoz, GA, Fernandez-Costa, JM, Cortes-Resendiz, A, De Chiara, F, Ramon-Azcon, J, (2022). Organs-on-Chips: Trends and Challenges in Advanced Systems Integration Advanced Materials Interfaces 9, 2201618

Organ-on-chip platforms combined with high-throughput sensing technology allow bridging gaps in information presented by 2D cultures modeled on static microphysiological systems. While these platforms do not aim to replicate whole organ systems with all physiological nuances, they try to mimic relevant structural, physiological, and functional features of organoids and tissues to best model disease and/or healthy states. The advent of this platform has not only challenged animal testing but has also presented the opportunity to acquire real-time, high-throughput data about the pathophysiology of disease progression by employing biosensors. Biosensors allow monitoring of the release of relevant biomarkers and metabolites as a result of physicochemical stress. It, therefore, helps conduct quick lead validation to achieve personalized medicine objectives. The organ-on-chip industry is currently embarking on an exponential growth trajectory. Multiple pharmaceutical and biotechnology companies are adopting this technology to enable quick patient-specific data acquisition at substantially low costs.

JTD Keywords: A-chip, Biosensor, Biosensors, Cancer, Cells, Culture, Disease models, Epithelial electrical-resistance, Hydrogel, Microfabrication, Microphysiological systems, Models, Niches, Organ-on-a-chips, Platform


Fernández‐Costa, Juan M., Ortega, María A., Rodríguez‐Comas, Júlia, Lopez‐Muñoz, Gerardo, Yeste, Jose, Mangas‐Florencio, Lluís, Fernández‐González, Miriam, Martin‐Lasierra, Eduard, Tejedera‐Villafranca, Ainoa, Ramon‐Azcon, Javier, (2022). Training-on-a-Chip: A MultiOrgan Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro Advanced Materials Technologies , 2200873

Lopez-Muñoz GA, Mughal S, Ramón-Azcón J, (2022). Sensors and Biosensors in Organs-on-a-Chip Platforms Microfluidics And Biosensors In Cancer Research 1379, 55-80

Biosensors represent a powerful analytical tool for analyzing biomolecular interactions with the potential to achieve real-time quantitative analysis with high accuracy using low sample volumes, minimum sample pretreatment with high potential for the development of in situ and highly integrated monitoring platforms. Considering these advantages, their use in cell-culture systems has increased over the last few years. Between the different technologies for cell culture, organs-on-a-chip (OOCs) represent a novel technology that tries to mimic an organ's functionality by combining tissue engineering/organoid with microfluidics. Although there are still challenges to achieving OOC models with high organ mimicking relevance, these devices can offer effective models for drug treatment development by identifying drug targets, screening toxicity, and determining the potential effects of drugs in living beings. Consequently, in the future, we might replace animal studies by offering more ethical test models. Considering the relevance that different physiological and biochemical parameters have in the correct functionality of cells, sensing and biosensing platforms can offer an effective way for the real-time monitoring of physiological parameters and, in our opinion, more relevant, the secretion of biomarkers such as cytokines, growth factors, and others related with the influence of drugs or other types of stimulus in cell metabolism. Keeping this concept in mind, in this chapter, we focus on describing the potential use of sensors and biosensors in OOC devices to achieve fully integrated platforms that monitor physiological parameters and cell metabolism.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: Biosensors, Organ-on-a-chip, Pre-clinical platforms, Screening, Sensors


Mir, M, Palma-Florez, S, Lagunas, A, Lopez-Martinez, MJ, Samitier, J, (2022). Biosensors Integration in Blood-Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases Acs Sensors 7, 1237-1247

Over the most recent decades, the development of new biological platforms to study disease progression and drug efficacy has been of great interest due to the high increase in the rate of neurodegenerative diseases (NDDs). Therefore, blood-brain barrier (BBB) as an organ-on-a-chip (OoC) platform to mimic brain-barrier performance could offer a deeper understanding of NDDs as well as a very valuable tool for drug permeability testing for new treatments. A very attractive improvement of BBB-oC technology is the integration of detection systems to provide continuous monitoring of biomarkers in real time and a fully automated analysis of drug permeably, rendering more efficient platforms for commercialization. In this Perspective, an overview of the main BBB-oC configurations is introduced and a critical vision of the BBB-oC platforms integrating electronic read out systems is detailed, indicating the strengths and weaknesses of current devices, proposing the great potential for biosensors integration in BBB-oC. In this direction, we name potential biomarkers to monitor the evolution of NDDs related to the BBB and/or drug cytotoxicity using biosensor technology in BBB-oC.

JTD Keywords: Bbb, Biosensors, Blood-brain barrier (bbb), Electrical-resistance, Electrochemical biosensors, Endothelial-cells, In-vitro model, Matrix metalloproteinases, Mechanisms, Neurodegenerative diseases (ndds), Organ-on-a-chip (ooc), Permeability, Stress, Transendothelial electrical resistance (teer), Transepithelial, Transport


Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J, (2021). In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip Biosensors 11,

Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.

JTD Keywords: biosensor, cytoarchitecture, dna hybridization, gelatin, in situ insulin monitoring, langerhans, lspr sensors, microfluidic device, organ-on-a-chip, parallel, platform, scaffold, Human pancreatic-islets, In situ insulin monitoring, Lspr sensors, Organ-on-a-chip


De Chiara F, Ferret-Miñana A, Ramón-Azcón J, (2021). The synergy between organ-on-a-chip and artificial intelligence for the study of nafld: From basic science to clinical research Biomedicines 9,

Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term, it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips (OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD’s pathogenic features for drug screening purposes. Those platforms have reached a high degree of complexity that generate an unprecedented amount of both structured and unstructured data that outpaced our capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and interpretation enables those platforms to reach their full potential. Furthermore, the use of them do not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex mechanism(s) underlying NAFLD.

JTD Keywords: artificial intelligence, extra-hepatic outcome, nafld, organ-on-a-chip, Artificial intelligence, Extra-hepatic outcome, Nafld, Organ-on-a-chip


Torras, N., García-Díaz, M., Fernández-Majada, V., Martínez, Elena, (2018). Mimicking epithelial tissues in three-dimensional cell culture models Frontiers in Bioengineering and Biotechnology 6, Article 197

Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.

JTD Keywords: 3D cell culture models, Biofabrication, Disease modeling, Drug screening, Epithelial barriers, Microengineered tissues, Organ-on-a-chip, Organoids


Rigat, L., Elizalde, A., Del Portillo, H. A., Homs-Corbera, A., Samitier, J., (2014). Selective cell culturing step using laminar co-flow to enhance cell culture in splenon-on-a-chip biomimetic platform MicroTAS 2014 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences , CBMS (San Antonio, USA) , 769-771

Constant evolution and improvements on areas such as tissue engineering, microfluidics and nanotechnology have made it possible to partially close the gap between conventional in vitro cell cultures and animal model-based studies. A step forward in this field concerns organ-on-chip technologies, capable of reproducing the most relevant physiological features of an organ in a microfluidic platform. In this work we have exploited the capabilities of laminar co-flow inside our biomimetic platform, the splenon-on-a-chip, in order to enhance cell culture inside its channels to better mimic the spleen's environment. © 14CBMS.

JTD Keywords: Cell culture, Co-flow, Laminar flow, Organ-on-a-chip, Spleen


Rigat, L., Bernabeu, M., Elizalde, A., de Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., del Portillo, H. A., Samitier, J., (2014). Human splenon-on-a-chip: Design and validation of a microfluidic model resembling the interstitial slits and the close/fast and open/slow microcirculations IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer (Seville, Spain) 41, 884-887

Splenomegaly, albeit variably, is a landmark of malaria infection. Due to technical and ethical constraints, however, the role of the spleen in malaria remains vastly unknown. The spleen is a complex three-dimensional branched vasculature exquisitely adapted to perform different functions containing closed/rapid and open/slow microcirculations, compartmentalized parenchyma (red pulp, white pulp and marginal zone), and sinusoidal structure forcing erythrocytes to squeeze through interstitial slits before reaching venous circulation. Taking into account these features, we have designed and developed a newfangled microfluidic device of a human splenon-on-a-chip (the minimal functional unit of the red pulp facilitating blood-filtering and destruction of malarial-infected red blood cells). Our starting point consisted in translating splenon physiology to the most similar microfluidic network, mimicking the hydrodynamic behavior of the organ, to evaluate and simulate its activities, mechanics and physiological responses and, therefore, enable us to study biological hypotheses. Different physiological features have been translated into engineering elements that can be combined to integrate a biomimetic microfluidic spleen model. The device is fabricated in polydimethylsiloxane (PDMS), a biocompatible polymer, irreversibly bonded to glass. Microfluidics analyses have confirmed that 90% of the blood circulates through a fast-flow compartment whereas the remaining 10% circulates through a slow compartment, equivalently to what has been observed in a real spleen. Moreover, erythrocytes and reticulocytes going through the slow-flow compartment squeeze at the end of it through 2μm physical constraints resembling interstitial slits to reach the closed/rapid circulation.

JTD Keywords: Malaria, Microfluidics, Organ-on-a-chip, Spleen