DONATE

Publications

by Keyword: Osteoblast

Krukiewicz, Katarzyna, Contessotto, Paolo, Nedjari, Salima, Martino, Mikael M, Redenski, Idan, Gabet, Yankel, Speranza, Giorgio, O'Brien, Timothy, Altankov, George, Awaja, Firas, (2024). Clinical potential of plasma-functionalized graphene oxide ultrathin sheets for bone and blood vessel regeneration: Insights from cellular and animal models Biomaterials Advances 161, 213867

Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the proosteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.

JTD Keywords: Adhesion, Angiogenesis, Biocompatibilit, Bone regeneratio, Coatings, Fibronectin, Graphene oxide, Growth, Mesenchymal stem-cells, Osteoblast, Osteogenic differentiation, Plasma treatment, Protein, Tissue regeneration


Juste-Lanas, Y, Díaz-Valdivia, N, Llorente, A, Ikemori, R, Bernardo, A, Arshakyan, M, Borau, C, Ramírez, J, Ruffinelli, JC, Nadal, E, Reguart, N, García-Aznar, JM, Alcaraz, J, (2023). 3D collagen migration patterns reveal a SMAD3-dependent and TGF-β1-independent mechanism of recruitment for tumour-associated fibroblasts in lung adenocarcinoma British Journal Of Cancer 128, 967-981

The TGF-β1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer.We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs.High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-β1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-β1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-β1, high glucose and Trametinib, exhibiting impaired migration in all conditions.The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.© 2022. The Author(s).

JTD Keywords: cancer, cell, degradation, nintedanib, osteoblast migration, phenotype, progression, protrusion dynamics, smad3, Growth-factor-beta


Ye, Z, Qi, YP, Zhang, AQ, Karels, BJ, Aparicio, C, (2023). Biomimetic Mineralization of Fibrillar Collagen with Strontium-doped Hydroxyapatite Acs Macro Letters 12, 408-414

Fibrillar collagen structures mineralized with hydroxyapatite using the polymer-induced liquid precursor (PILP) process have been explored as synthetic models for studying biomineralization of human hard tissues and have also been applied in the fabrication of scaffolds for hard tissue regeneration. Strontium has important biological functions in bone and has been used as a therapeutic agent for treating diseases that result in bone defects, such as osteoporosis. Here, we developed a strategy to mineralize collagen with Sr-doped hydroxyapatite (HA) using the PILP process. Doping with Sr altered the crystal lattice of HA and inhibited the degree of mineralization in a concentration-dependent manner, but did not affect the unique formation of intrafibrillar minerals using the PILP. The Sr-doped HA nanocrystals were aligned in the [001] direction but did not recapitulate the parallel alignment of the c-axis of pure Ca HA in relation to the collagen fiber long axis. The mimicry of doping Sr in PILP-mineralized collagen can help understand the doping of Sr in natural hard tissues and during treatment. The fibrillary mineralized collagen with Sr-doped HA will be explored in future work as biomimetic and bioactive scaffolds for regeneration of bone and tooth dentin.

JTD Keywords: bone regeneration, osteoblast differentiation, osteoporosis, ranelate, risk, scaffolds, women, Intrafibrillar mineralization


Oliver-Cervelló, L, Martin-Gómez, H, Mandakhbayar, N, Jo, YW, Cavalcanti-Adam, EA, Kim, HW, Ginebra, MP, Lee, JH, Mas-Moruno, C, (2022). Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings Advanced Healthcare Materials 11, e2201339

Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.© 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.

JTD Keywords: adhesion formation, bmp-2, cell adhesions, in-vivo, integrin, mesenchymal stem-cells, morphogenetic protein-2, multifunctionality, osteoblastic differentiation, osteogenic differentiation, rgd-dwiva, rgd-peptides, titanium biofunctionalization, titanium surfaces, Animals, Biocompatible materials, Biomimetic peptides, Bone morphogenetic protein 2, Bone regeneration, Cell adhesions, Cell differentiation, Epitopes, Extracellular matrix, Integrins, Marrow stromal cells, Multifunctionality, Osteogenesis, Osteogenic differentiation, Peptides, Rats, Rgd-dwiva, Titanium, Titanium biofunctionalization


Oliver-Cervelló, L, Martin-Gómez, H, Reyes, L, Noureddine, F, Cavalcanti-Adam, EA, Ginebra, MP, Mas-Moruno, C, (2021). An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling Advanced Healthcare Materials 10, e2001757

© 2020 Wiley-VCH GmbH Recreating the healing microenvironment is essential to regulate cell–material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.

JTD Keywords: binding, biomaterials, biomimetic peptides, bone, cell adhesion, cell differentiation, differentiation, dwiva, multifunctional coatings, osseointegration, osteoblasts, rgd, surface, surface functionalization, Biomimetic peptides, Biomimetics, Cell adhesion, Cell differentiation, Dwiva, Integrins, Intercellular signaling peptides and proteins, Matrix-bound bmp-2, Peptides, Rgd, Surface functionalization


Canal, C., Fontelo, R., Hamouda, I., Guillem-Marti, J., Cvelbar, U., Ginebra, M. P., (2017). Plasma-induced selectivity in bone cancer cells death Free Radical Biology and Medicine , 110, 72-80

Background: Current therapies for bone cancers - either primary or metastatic – are difficult to implement and unfortunately not completely effective. An alternative therapy could be found in cold plasmas generated at atmospheric pressure which have already demonstrated selective anti-tumor action in a number of carcinomas and in more relatively rare brain tumors. However, its effects on bone cancer are still unknown. Methods: Herein, we employed an atmospheric pressure plasma jet (APPJ) to validate its selectivity towards osteosarcoma cell line vs. osteoblasts & human mesenchymal stem cells. Results: Cytotoxicity following direct interaction of APPJ with cells is comparable to indirect interaction when only liquid medium is treated and subsequently added to the cells, especially on the long-term (72 h of cell culture). Moreover, following contact of the APPJ treated medium with cells, delayed effects are observed which lead to 100% bone cancer cell death through apoptosis (decreased cell viability with incubation time in contact with APPJ treated medium from 24 h to 72 h), while healthy cells remain fully viable and unaffected by the treatment. Conclusions: The high efficiency of the indirect treatment indicates that an important role is played by the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the gaseous plasma stage and then transmitted to the liquid phase, which overall lead to lethal and selective action towards osteosarcoma cells. These findings open new pathways for treatment of metastatic bone disease with a minimally invasive approach.

JTD Keywords: Atmospheric pressure plasma jet, Bone cancer, hMSC, HOb, Liquids, Osteoblasts, Osteosarcoma, SaOS-2


Sadowska, J. M., Guillem-Marti, J., Montufar, E. B., Espanol, M., Ginebra, M. P., (2017). Biomimetic versus sintered calcium phosphates: The in vitro behavior of osteoblasts and mesenchymal stem cells Tissue Engineering Part A , 23, (23-24), 1297-1309

The fabrication of calcium phosphates using biomimetic routes, namely, precipitation processes at body temperature, results in distinct features compared to conventional sintered calcium phosphate ceramics, such as a high specific surface area (SSA) and micro-or nanometric crystal size. The aim of this article is to analyze the effects of these parameters on cell response, focusing on two bone cell types: rat mesenchymal stem cells (rMSCs) and human osteoblastic cells (SaOS-2). Biomimetic calcium-deficient hydroxyapatite (CDHA) was obtained by a low temperature setting reaction, and α-Tricalcium phosphate (α-TCP) and β-Tricalcium phosphate were subsequently obtained by sintering CDHA either at 1400°C or 1100°C. Sintered stoichiometric hydroxyapatite (HA) was also prepared using ceramic routes. The materials were characterized in terms of SSA, skeletal density, porosity, and pore size distribution. SaOS-2 cells and rMSCs were seeded either directly on the surfaces of the materials or on glass coverslips subsequently placed on top of the materials to expose the cells to the CaP-induced ionic changes in the culture medium, while avoiding any topography-related effects. CDHA produced higher ionic fluctuations in both cell culture media than sintered ceramics, with a strong decrease of calcium and a release of phosphate. Indirect contact cell cultures revealed that both cell types were sensitive to these ionic modifications, resulting in a decrease in proliferation rate, more marked for CDHA, this effect being more pronounced for rMSCs. In direct contact cultures, good cell adhesion was found on all materials, but, while cells were able to proliferate on the sintered calcium phosphates, cell number was significantly reduced with time on biomimetic CDHA, which was associated to a higher percentage of apoptotic cells. Direct contact of the cells with biomimetic CDHA resulted also in a higher alkaline phosphatase activity for both cell types compared to sintered CaPs, indicating a promotion of the osteoblastic phenotype.

JTD Keywords: Biomimetic hydroxyapatite, Calcium phosphate, Mesenchymal stem cell, Osteoblast


Gustavsson, J., Planell, J., Engel, E., (2013). Ion-selective electrodes to monitor osteoblast-like cellular influence on the extracellular concentration of calcium Journal of Tissue Engineering and Regenerative Medicine 7, (8), 609-620

In bone tissue engineering, the composition of the ionic extracellular environment (IEE) can determine both cellular fate and a biomaterial's development and performance. Therefore, precise control of the IEE and a perfect understanding of the dynamic changes that it can be subject to due to cellular activity is highly desired. To achieve this, we initially monitored how two standard osteoblast-like cell models that expressed either high or low alkaline phosphatase activity - SAOS-2 and MG63 cells, respectively - affected the extracellular concentrations of calcium and phosphate during long-term cultures. It was observed that cellular influence on the IEE varied greatly between the two models and could be linked to the capacity of cells to deposit calcium in the extracellular matrix. Miniaturized ion-selective electrodes that could allow for real-time monitoring of calcium in a minimally invasive way were then constructed. The electrodes were characterized in standard in vitro cell culture environments, prior to being successfully applied for periods of 24h, to record the dynamics of cell-induced deposition of calcium in the extracellular matrix, while using osteogenic media of either high or low concentrations of phosphate. As a result, this study provides the background and technological means for the non-destructive evaluation of the IEE in vitro and allows for the optimization and development of better models of bone tissue construction.

JTD Keywords: Extracellular ions, Ion-selective electrode, MG63, Mineralization, Osteoblasts, Saos-2, Sensor, Tissue engineering


Navarro, M., Pu, F., Hunt, J. A., (2012). The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells Experimental Cell Research 318, (4), 361-370

Controlling the fate of implanted hMSCs is one of the major drawbacks to be overcome to realize tissue engineering strategies. In particular, the effect of the inflammatory environment on hMSCs behaviour is poorly understood. Studying and mimicking the inflammatory process in vitro is a very complex and challenging task that involves multiple variables. This research addressed the questions using in vitro co-cultures of primary derived hMSCs together with human peripheral blood mononucleated cells (PBMCs); the latter are key agents in the inflammatory process. This work explored the in vitro phenotypic changes of hMSCs in co-culture direct contact with monocytes and lymphocytes isolated from blood using both basal and osteogenic medium. Our findings indicated that hMSCs maintained their undifferentiated phenotype and pluripotency despite the contact with PBMCs. Moreover, hMSCs demonstrated increased proliferation and were able to differentiate specifically down the osteogenic lineage pathway. Providing significant crucial evidence to support the hypothesis that inflammation and host defence mechanisms could be utilised rather than avoided and combated to provide for the successful therapeutic application of stem cell therapies.

JTD Keywords: Co-culture, Inflammation, Mesenchymal stem cells, Monocytes, Osteoblasts


Byrne, Damien P., Lacroix, Damien, Prendergast, Patrick J., (2011). Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach Journal of Orthopaedic Research , 29, (10), 1496-1503

In this study, a three-dimensional (3D) computational simulation of bone regeneration was performed in a human tibia under realistic muscle loading. The simulation was achieved using a discrete lattice modeling approach combined with a mechanoregulation algorithm to describe the cellular processes involved in the healing process namely proliferation, migration, apoptosis, and differentiation of cells. The main phases of fracture healing were predicted by the simulation, including the bone resorption phase, and there was a qualitative agreement between the temporal changes in interfragmentary strain and bending stiffness by comparison to experimental data and clinical results. Bone healing was simulated beyond the reparative phase by modeling the transition of woven bone into lamellar bone. Because the simulation has been shown to work with realistic anatomical 3D geometry and muscle loading, it demonstrates the potential of simulation tools for patient-specific pre-operative treatment planning.

JTD Keywords: Tissue differentiation, Computational analysis, Mechanical conditions, Bone regeneration, Weight-bearing, Proliferation, Osteoblast, Stiffness, Ingrowth, Scaffold


Comelles, J., Estevez, M., Martinez, E., Samitier, J., (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion Nanomedicine: Nanotechnology Biology and Medicine , 6, (1), 44-51

Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. However, novel applications in the biosensor field require materials to be compatible with cell growth and at the same time be suitable for technological processing. Technological polymers are key materials in the fabrication of disposable parts and other sensing elements. As such, it is essential to characterize the surface properties of technological polymers, especially after processing and sterilization. It is also important to understand how technological polymers affect cell behavior when in contact with polymer materials. Therefore, the aim of this research was to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly (methyl methacrylate), polystyrene, and poly(dimethylsiloxane). Glass was used as the control material. From the Clinical Editor: Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. The aim of this research is to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly(methylmethacrylate) (PMMA), polystyrene (PS), and poly(dimethylsiloxane) (PDMS).

JTD Keywords: Thin-films, Poly(methyl methacrylate), Osteoblast adhesion, Electron-microscopy, Fibronectin, Polystyrene, Oly(dimethylsiloxane), Biocompatibility, Hydroxyapatite, Behavior


Estevez, M., Fernandez-Ulibarri, I., Martinez, E., Egea, G., Samitier, J., (2010). Changes in the internal organization of the cell by microstructured substrates Soft Matter 6, (3), 582-590

Surface features at the micro and nanometre scale have been shown to influence and even determine cell behaviour and cytoskeleton organization through direct mechanotransductive pathways. Much less is known about the function and internal distribution of organelles of cells grown on topographically modified surfaces. In this study, the nanoimprint lithography technique was used to manufacture poly(methyl methacrylate) (PMMA) sheets with a variety of features in the micrometre size range. Normal rat kidney (NRK) fibroblasts were cultured on these substrates and immunofluorescence staining assays were performed to visualize cell adhesion, the organization of the cytoskeleton and the morphology and subcellular positioning of the Golgi complex. The results show that different topographic features at the micrometric scale induce different rearrangements of the cell cytoskeleton, which in turn alter the positioning and morphology of the Golgi complex. Microposts and microholes alter the mechanical stability of the Golgi complex by modifying the actin cytoskeleton organization leading to the compaction of the organelle. These findings prove that physically modified surfaces are a valuable tool with which to study the dynamics of cell cytoskeleton organization and its subsequent repercussion on internal cell organization and associated function.

JTD Keywords: Actin stress fibers, Golgi-complex, Focal adhesions, Cytoskeletal organization, Osteoblast adhesion, Mammalian-cells, Micron-scale, Nanoscale, Dynamics, Rho


Engel, E., Martinez, E., Mills, C. A., Funes, M., Planell, J. A., Samitier, J., (2009). Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates Annals of Anatomy-Anatomischer Anzeiger , 191, (1), 136-144

Recent studies on 2D substrates have revealed the importance of surface properties in affecting cell behaviour. In particular, surface topography appears to influence and direct cell migration. The development of new technologies of hot embossing and micro-imprinting has made it possible to study cell interactions with controlled micro features and to determine how these features can affect cell behaviour. Several studies have been carried out on the effect of microstructures on cell adhesion, cell guidance and cell proliferation. However, there is still a lack of knowledge on how these features affect mesenchymal stem cell differentiation. This study was designed to evaluate whether highly controlled microstructures on PMMA could induce rMSC differentiation into an osteogenic lineage. Structured PMMA was seeded with rMSC and cell number; cell morphology and cell differentiation were evaluated. Results confirm that microstructures not only affect cell proliferation and alignment but also have a synergistic effect with osteogenic medium on rMSC differentiation into mature osteoblasts.

JTD Keywords: Mesenchymal stem cells, Osteoblasts, Topography, Microstructures


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

JTD Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds


Martinez, E., Engel, E., Lopez-Iglesias, C., Mills, C. A., Planell, J. A., Samitier, J., (2008). Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: A study of cell-substrate interactions Micron , 39, (2), 111-116

Topographic micro and nanostructures can play an interesting role in cell behaviour when cells are cultured on these kinds of patterned substrates. It is especially relevant to investigate the influence of the nanometric dimensions topographic features on cell morphology, proliferation, migration and differentiation. To this end, some of the most recent fabrication technologies, developed for the microelectronics industry, can be used to produce well-defined micro and nanopatterns on biocompatible polymer substrates. In this work, osteoblast-like cells are grown on poly(methyl methacrylate) substrates patterned by nanoimprint lithography techniques. Examination of the cell-substrate interface can reveal important details about the cell morphology and the distribution of the focal contacts on the substrate surface. For this purpose, a combination of focused ion beam milling and scanning electron microscopy techniques has been used to image the cell-substrate interface. This technique, if applied to samples prepared by freeze-drying methods, allows high-resolution imaging of cross-sections through the cell and the substrate, where the interactions between the nanopatterned substrate, the cell and the extracellular matrix, which are normally hidden by the bulk of the cell, can be studied.

JTD Keywords: Electron microscopy, Interface, Nanotopography, Osteoblast, Adhesion molecule, Cell morphology


Charles-Harris, M., Koch, M. A., Navarro, M., Lacroix, D., Engel, E., Planell, J. A., (2008). A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study Journal of Materials Science-Materials in Medicine , 19, (4), 1503-1513

Biodegradable polymers reinforced with an inorganic phase such as calcium phosphate glasses may be a promising approach to fulfil the challenging requirements presented by 3D porous scaffolds for tissue engineering. Scaffolds' success depends mainly on their biological behaviour. This work is aimed to the in vitro study of polylactic acid (PLA)/CaP glass 3D porous constructs for bone regeneration. The scaffolds were elaborated using two different techniques, namely solvent-casting and phase-separation. The effect of scaffolds' micro and macrostructure on the biological response of these scaffolds was assayed. Cell proliferation, differentiation and morphology within the scaffolds were studied. Furthermore, polymer/glass scaffolds were seeded under dynamic conditions in a custom-made perfusion bioreactor. Results indicate that the final architecture of the solvent-cast or phase separated scaffolds have a significant effect on cells' behaviour. Solvent-cast scaffolds seem to be the best candidates for bone tissue engineering. Besides, dynamic seeding yielded a higher seeding efficiency in comparison with the static method.

JTD Keywords: Biocompatible Materials/ chemistry, Bone and Bones/ metabolism, Calcium Phosphates/ chemistry, Cell Differentiation, Cell Proliferation, Humans, Lactic Acid/ chemistry, Microscopy, Confocal, Microscopy, Electron, Scanning, Osteoblasts/metabolism, Permeability, Polymers/ chemistry, Porosity, Solvents/chemistry, Tissue Engineering/ methods


Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine , 19, (4), 1839-1850

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

JTD Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties