DONATE

Publications

by Keyword: Tissue Scaffolds

Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J. A., (2008). Nanotechnology in regenerative medicine: the materials side Trends in Biotechnology , 26, (1), 39-47

Regenerative medicine is an emerging multidisciplinary field that aims to restore, maintain or enhance tissues and hence organ functions. Regeneration of tissues can be achieved by the combination of living cells, which will provide biological functionality, and materials, which act as scaffolds to support cell proliferation. Mammalian cells behave in vivo in response to the biological signals they receive from the surrounding environment, which is structured by nanometre-scaled components. Therefore, materials used in repairing the human body have to reproduce the correct signals that guide the cells towards a desirable behaviour. Nanotechnology is not only an excellent tool to produce material structures that mimic the biological ones but also holds the promise of providing efficient delivery systems. The application of nanotechnology to regenerative medicine is a wide issue and this short review will only focus on aspects of nanotechnology relevant to biomaterials science. Specifically, the fabrication of materials, such as nanoparticles and scaffolds for tissue engineering, and the nanopatterning of surfaces aimed at eliciting specific biological responses from the host tissue will be addressed.

JTD Keywords: Animals, Biocompatible Materials/ metabolism, Humans, Nanoparticles, Nanotechnology/ methods, Regenerative Medicine/ methods, Tissue Scaffolds


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

JTD Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds