DONATE

Publications

by Keyword: Pharmacology

Sortino, R, Cunquero, M, Castro-Olvera, G, Gelabert, R, Moreno, M, Riefolo, F, Matera, C, Fernàndez-Castillo, N, Agnetta, L, Decker, M, Lluch, JM, Hernando, J, Loza-Alvarez, P, Gorostiza, P, (2023). Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo Angewandte Chemie (International Ed. Print) 62, e202311181

To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.© 2023 Wiley-VCH GmbH.

JTD Keywords: absorption, azobenzene photoswitches, deep, glutamate-receptor, intravital microscopy, multiphoton excitation, muscarinic neuromodulation, photopharmacology, two-photon lithography and polymerization, 2-photon excitation, Azobenzene, Multiphoton excitation, Muscarinic neuromodulation, Photopharmacology, Photopharmacology, azobenzene, muscarinic neuromodulation, multiphoton excitation, two-photon lithography and polymerization, Two-photon lithography and polymerization


Roman-Alamo, L, Allaw, M, Avalos-Padilla, Y, Manca, ML, Manconi, M, Fulgheri, F, Fernandez-Lajo, J, Rivas, L, Vazquez, JA, Peris, JE, Roca-Gerones, X, Poonlaphdecha, S, Alcover, MM, Fisa, R, Riera, C, Fernandez-Busquets, X, (2023). In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis Pharmaceutics 15, 1163

The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance and efficacy of this drug for the treatment of leishmaniasis by means of aerosol therapy. The targeting to macrophages of pentamidine-loaded liposomes coated with chondroitin sulfate or heparin increased about twofold (up to ca. 90%) relative to noncoated liposomes. The encapsulation of pentamidine in liposomes ameliorated its activity on the amastigote and promastigote forms of Leishmania infantum and Leishmania pifanoi, and it significantly reduced cytotoxicity on human umbilical endothelial cells, for which the concentration inhibiting 50% of cell viability was 144.2 ± 12.7 µM for pentamidine-containing heparin-coated liposomes vs. 59.3 ± 4.9 µM for free pentamidine. The deposition of liposome dispersions after nebulization was evaluated with the Next Generation Impactor, which mimics human airways. Approximately 53% of total initial pentamidine in solution reached the deeper stages of the impactor, with a median aerodynamic diameter of ~2.8 µm, supporting a partial deposition on the lung alveoli. Upon loading pentamidine in phospholipid vesicles, its deposition in the deeper stages significantly increased up to ~68%, and the median aerodynamic diameter decreased to a range between 1.4 and 1.8 µm, suggesting a better aptitude to reach the deeper lung airways in higher amounts. In all, nebulization of liposome-encapsulated pentamidine improved the bioavailability of this neglected drug by a patient-friendly delivery route amenable to self-administration, paving the way for the treatment of leishmaniasis and other infections where pentamidine is active.

JTD Keywords: aerosol therapy, delivery-systems, drug encapsulation, drugs, ex-vivo models, formulation, leishmania infantum, leishmania pifanoi, leishmaniasis, liposomes, macrophages, miltefosine, pentamidine, pharmacology, pulmonary absorption, visceral leishmaniasis, Amphotericin-b treatment, Leishmania infantum, Pentamidine


Matera, C, Calvé, P, Casadó-Anguera, V, Sortino, R, Gomila, AMJ, Moreno, E, Gener, T, Delgado-Sallent, C, Nebot, P, Costazza, D, Conde-Berriozabal, S, Masana, M, Hernando, J, Casadó, V, Puig, MV, Gorostiza, P, (2022). Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals International Journal Of Molecular Sciences 23, 10114

Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.

JTD Keywords: azobenzene, behavior, brainwave, d-1, dopamine, gpcr, in vivo electrophysiology, inhibitors, optogenetics, optopharmacology, photochromism, photopharmacology, photoswitch, stimulation, zebrafish, Azobenzene, Receptors, Zebrafish


Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442

Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.

JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems


Barbero-Castillo, A, Riefolo, F, Matera, C, Caldas-Martínez, S, Mateos-Aparicio, P, Weinert, JF, Garrido-Charles, A, Claro, E, Sanchez-Vives, MV, Gorostiza, P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8, 2005027

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.

JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns


Prischich, D, Gomila, AMJ, Milla-Navarro, S, Sanguesa, G, Diez-Alarcia, R, Preda, B, Matera, C, Batlle, M, Ramírez, L, Giralt, E, Hernando, J, Guasch, E, Meana, JJ, de la Villa, P, Gorostiza, P, (2021). Adrenergic Modulation With Photochromic Ligands Angewandte Chemie (International Ed. Print) 60, 3625-3631

© 2020 Wiley-VCH GmbH Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition, and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio-temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability, and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice.

JTD Keywords: adrenergic receptors, azo compounds, neurotransmitters, photochromism, Adrenergic receptors, Azo compounds, Neurotransmitters, Photochromism, Photopharmacology


Maleeva, G, Nin-Hill, A, Rustler, K, Petukhova, E, Ponomareva, D, Mukhametova, E, Gomila, AMJ, Wutz, D, Alfonso-Prieto, M, König, B, Gorostiza, P, Bregestovski, P, (2021). Subunit-specific photocontrol of glycine receptors by azobenzene-nitrazepam photoswitcher Eneuro 8, 0294-20.2020

© 2021 Maleeva et al. Photopharmacology is a unique approach that through a combination of photochemistry methods and advanced life science techniques allows the study and control of specific biological processes, ranging from intracellular pathways to brain circuits. Recently, a first photochromic channel blocker of anion-selective GABAA receptors, the azobenzene-nitrazepam-based photochromic compound (Azo-NZ1), has been described. In the present study, using patch-clamp technique in heterologous system and in mice brain slices, site-directed mutagenesis and molecular modeling we provide evidence of the interaction of Azo-NZ1 with glycine receptors (GlyRs) and determine the molecular basis of this interaction. Glycinergic synaptic neurotransmission determines an important inhibitory drive in the vertebrate nervous system and plays a crucial role in the control of neuronal circuits in the spinal cord and brain stem. GlyRs are involved in locomotion, pain sensation, breathing, and auditory function, as well as in the development of such disorders as hyperekplexia, epilepsy, and autism. Here, we demonstrate that Azo-NZ1 blocks in a UV-dependent manner the activity of a2 GlyRs (GlyR2), while being barely active on a1 GlyRs (GlyR1). The site of Azo-NZ1 action is in the chloride-selective pore of GlyR at the 2’ position of transmembrane helix 2 and amino acids forming this site determine the difference in Azo-NZ1 blocking activity between GlyR2 and GlyR1. This subunit-specific modulation is also shown on motoneurons of brainstem slices from neonatal mice that switch during development from expressing “fetal” GlyR2 to “adult” GlyR1 receptors.

JTD Keywords: brain slices, glycine receptors, hypoglossal motoneurons, molecular modelling, patch-clamp, photopharmacology, Brain slices, Glycine receptors, Hypoglossal motoneurons, Molecular modelling, Patch-clamp, Photopharmacology


Gomila, Alexandre M. J., Rustler, Karin, Maleeva, Galyna, Nin-Hill, Alba, Wutz, Daniel, Bautista-Barrufet, Antoni, Rovira, Xavier, Bosch, Miquel, Mukhametova, Elvira, Petukhova, Elena, Ponomareva, Daria, Mukhamedyarov, Marat, Peiretti, Franck, Alfonso-Prieto, Mercedes, Rovira, Carme, König, Burkhard, Bregestovski, Piotr, Gorostiza, Pau, (2020). Photocontrol of endogenous glycine receptors in vivo Cell Chemical Biology 27, (11), 1425-1433.e7

Glycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies.

JTD Keywords: Glycine receptors, Photopharmacology, Optopharmacology, Inhibitory neurotransmission, CNS, Photoswitch


Maleeva, Galyna, Nin-Hill, Alba, Rustler, Karin, Petukhova, Elena, Ponomareva, Daria, Mukhametova, Elvira, Gomila-Juaneda, Alexandre, Wutz, Daniel, Alfonso-Prieto, Mercedes, König, Burkhard, Gorostiza, Pau, Bregestovski, Piotr, (2020). Subunit-specific photocontrol of glycine receptors by azobenzene-nitrazepam photoswitcher eneuro 8, (1), 0294-20

Photopharmacology is a unique approach that through a combination of photochemistry methods and advanced life science techniques allows the study and control of specific biological processes, ranging from intracellular pathways to brain circuits. Recently, a first photochromic channel blocker of anion-selective GABAA receptors, Azo-NZ1, has been described. In the present study using patch-clamp technique in heterologous system and in mice brain slices, site-directed mutagenesis and molecular modelling we provide evidence of the interaction of Azo-NZ1 with glycine receptors (GlyRs) and determine the molecular basis of this interaction. Glycinergic synaptic neurotransmission determines an important inhibitory drive in the vertebrate nervous system and plays a crucial role in the control of neuronal circuits in the spinal cord and brain stem. GlyRs are involved in locomotion, pain sensation, breathing and auditory function, as well as in the development of such disorders as hyperekplexia, epilepsy and autism. Here we demonstrate that Azo-NZ1 blocks in a UV dependent manner the activity of alpha2 GlyRs (GlyR2), while being barely active on alpha1 GlyRs (GlyR1). The site of Azo-NZ1 action is in the chloride-selective pore of GlyR at the 2’ position of transmembrane helix 2 and amino acids forming this site determine the difference in Azo-NZ1 blocking activity between GlyR2 and GlyR1. This subunit specific modulation is also shown on motoneurons of brainstem slices from neonatal mice that switch during development from expressing "foetal" GlyR2 to "adult" GlyR1 receptors. Significance Statement Photochromic molecules are becoming widely used for studying and modulating various biological processes. Successful application of these compounds, whose activity can be controlled with light, potentially provides a promising tool for future therapeutic approaches. The main advantage of such compounds is their precise spatial and temporal selectivity, a property that favours specific drug action and diminishes their side effects. In the present study, we describe in detail the interaction of the novel azobenzene-nitrazepam-based photochromic compound (Azo-NZ1) with glycine receptors (GlyRs) and determine its subunit-specific blocking activity in the Cl-selective pore of GlyRs. This compound offers a new strategy for specific control of glycinergic circuits and stepping stone for design of new GlyR-active drugs.

JTD Keywords: Brain slices, Glycine receptors, Hypoglossal motoneurons, Molecular modelling, Patch-clamp, Photopharmacology


Pittolo, Silvia, Lee, Hyojung, Lladó, Anna, Tosi, Sébastien, Bosch, Miquel, Bardia, Lídia, Gómez-Santacana, Xavier, Llebaria, Amadeu, Soriano, Eduardo, Colombelli, Julien, Poskanzer, Kira E., Perea, Gertrudis, Gorostiza, Pau, (2019). Reversible silencing of endogenous receptors in intact brain tissue using two-photon pharmacology Proceedings of the National Academy of Sciences of the United States of America 116, (27), 13680-13689

The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast, and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and 2-photon excitation using pulsed near-infrared lasers to reversibly silence metabotropic glutamate 5 (mGlu5) receptor activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 µm. Thus, 2-photon pharmacology using alloswitch allows investigating mGlu5-dependent processes in wild-type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.

JTD Keywords: Photopharmacology, Photoactivation, Pharmacological selectivity, Functional silencing, 2-photon pharmacology


Matera, Carlo, Gomila-Juaneda, Alexandre, Camarero, Núria, Libergoli, Michela, Soler, Concepció, Gorostiza, Pau, (2018). A photoswitchable antimetabolite for targeted photoactivated chemotherapy Journal of the American Chemical Society 140, (46), 15764-15773

The efficacy and tolerability of systemically administered anticancer agents are limited by their off-target effects. Precise spatiotemporal control over their cytotoxic activity would allow improving chemotherapy treatments, and light-regulated drugs are well suited to this purpose. We have developed phototrexate, the first photoswitchable inhibitor of the human dihydrofolate reductase (DHFR), as a photochromic analog of methotrexate, a widely prescribed chemotherapeutic drug to treat cancer and psoriasis. Quantification of the light-regulated DHFR enzymatic activity, cell proliferation, and in vivo effects in zebrafish show that phototrexate behaves as a potent antifolate in its photoactivated cis configuration, and that it is nearly inactive in its dark-relaxed trans form. Thus, phototrexate constitutes a proof-of-concept to design light-regulated cytotoxic small molecules, and a step forward to develop targeted anticancer photochemotherapies with localized efficacy and reduced adverse effects.

JTD Keywords: Photopharmacology, Photodynamic therapy, Antiproliferative, Arthritis, Psoriasis, Nanomedicine


Gorostiza, Pau, Arosio, Daniele, Bregestovski, Piotr, (2013). Molecular probes and switches for functional analysis of receptors, ion channels and synaptic networks Frontiers in Molecular Neuroscience 6, (Article 48), 1-2

Nevola, L., Martín-Quirós, A., Eckelt, K., Camarero, N., Tosi, S., Llobet, A., Giralt, E., Gorostiza, P., (2013). Light-regulated stapled peptides to inhibit protein-protein interactions involved in clathrin-mediated endocytosis Angewandte Chemie - International Edition 52, (30), 7704-7708

Control of membrane traffic: Photoswitchable inhibitors of protein-protein interactions were applied to photoregulate clathrin-mediated endocytosis (CME) in living cells. Traffic light (TL) peptides acting as "stop" and "go" signals for membrane traffic can be used to dissect the role of CME in receptor internalization and in cell growth, division, and differentiation.

JTD Keywords: Clathrin-mediated endocytosis, Optopharmacology, Peptides, Photoswitches, Protein-protein interactions


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A , 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

JTD Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds