DONATE

Publications

by Keyword: Progression

Duch, P, Díaz-Valdivia, N, Gabasa, M, Ikemori, R, Arshakyan, M, Fernández-Nogueira, P, Llorente, A, Teixido, C, Ramírez, J, Pereda, J, Chuliá-Peris, L, Galbis, JM, Hilberg, F, Reguart, N, Radisky, DC, Alcaraz, J, (2024). Aberrant TIMP-1 production in tumor-associated fibroblasts drives the selective benefits of nintedanib in lung adenocarcinoma Cancer Science 115, 1505-1519

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.

JTD Keywords: Cancer-associated fibroblast,fibrosis,nintedanib,non-small-cell lung cancer,smad3,therapy resistance,timp-, Cell carcinoma,breast-cancer,expression,progression,inhibitor,blockade,efficac


Cassani, M, Fernandes, S, Cruz, JOD, Durikova, H, Vrbsky, J, Patocka, M, Hegrova, V, Klimovic, S, Pribyl, J, Debellis, D, Skladal, P, Cavalieri, F, Caruso, F, Forte, G, (2024). YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles Advanced Science 11, e2302965

Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

JTD Keywords: cancer treatment, cells, differentiation, hippo pathway, mechanics, mechanobiology, mechanotransduction, nanoparticles, progression, protein, resistance, yap-signaling, yap/taz, Adaptor proteins, signal transducing, Bio-nano interaction, Bio-nano interactions, Breast cancer cells, Cancer cells, Cancer treatment, Cells, Cellular therapeutics, Cellular uptake, Chemotherapy, Cytology, Diseases, Extracellular-matrix, Human, Humans, Mechano-biology, Mechanobiology, Metabolism, Nanoparticle, Nanoparticle interaction, Nanoparticles, Physiology, Protein serine threonine kinase, Protein serine-threonine kinases, Protein signaling, Signal transducing adaptor protein, Signal transduction, Therapeutic effects, Triple negative breast cancer, Triple negative breast neoplasms, Triple-negative breast cancers, Yap-signaling, Yes-associated protein-signaling


Narciso, M, Martínez, A, Júnior, C, Díaz-Valdivia, N, Ulldemolins, A, Berardi, M, Neal, K, Navajas, D, Farré, R, Alcaraz, J, Almendros, I, Gavara, N, (2023). Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin Cancers 15, 2404

Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.

JTD Keywords: atomic force microscopy, basement membrane, breast-cancer, decellularization, expression, extracellular matrix, extracellular-matrix, fibronectin, intermittent hypoxia, lung carcinoma, lung metastases, melanoma, metastatic niche formation, micromechanical properties, nintedanib, signature, stiffness, tumor-growth, Colorectal-cancer progression, Lung metastases, Stiffness


Juste-Lanas, Y, Díaz-Valdivia, N, Llorente, A, Ikemori, R, Bernardo, A, Arshakyan, M, Borau, C, Ramírez, J, Ruffinelli, JC, Nadal, E, Reguart, N, García-Aznar, JM, Alcaraz, J, (2023). 3D collagen migration patterns reveal a SMAD3-dependent and TGF-β1-independent mechanism of recruitment for tumour-associated fibroblasts in lung adenocarcinoma British Journal Of Cancer 128, 967-981

The TGF-β1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer.We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs.High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-β1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-β1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-β1, high glucose and Trametinib, exhibiting impaired migration in all conditions.The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.© 2022. The Author(s).

JTD Keywords: cancer, cell, degradation, nintedanib, osteoblast migration, phenotype, progression, protrusion dynamics, smad3, Growth-factor-beta


Blanco-Fernandez, B, Ibanez-Fonesca, A, Orbanic, D, Ximenes-Carballo, C, Perez-Amodio, S, Rodriguez-Cabello, JC, Engel, E, (2023). Elastin-like Recombinamer Hydrogels as Platforms for Breast Cancer Modeling Biomacromolecules 24, 4408-4418

The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.

JTD Keywords: clinical-trials, collagen i, discovery, mcf-7 cells, phenotype, progression, spheroids, translation, tumor microenvironment, Extracellular-matrix


Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence


Deborde, S, Gusain, L, Powers, A, Marcadis, A, Yu, YS, Chen, CH, Frants, A, Kao, E, Tang, LH, Vakiani, E, Amisaki, M, Balachandran, VP, Calo, A, Omelchenko, T, Jessen, KR, Reva, B, Wong, RJ, (2022). Reprogrammed Schwann cells organize into dynamic tracks that promote pancreatic cancer invasion Cancer Discovery 12, 2454-2473

Abstract Nerves are a component of the tumor microenvironment contributing to cancer progression, but the role of cells from nerves in facilitating cancer invasion remains poorly understood. Here we show that Schwann cells (SCs) activated by cancer cells collectively function as Tumor Activated Schwann cell Tracks (TASTs) that promote cancer cell migration and invasion. Non-myelinating SCs form TASTs and have cell gene expression signatures that correlate with diminished survival in patients with pancreatic ductal adenocarcinoma. In TASTs, dynamic SCs form tracks that serve as cancer pathways and apply forces on cancer cells to enhance cancer motility. These SCs are activated by c-Jun, analogous to their reprogramming during nerve repair. This study reveals a mechanism of cancer cell invasion that co-opts a wound repair process and exploits the ability of SCs to collectively organize into tracks. These findings establish a novel paradigm of how cancer cells spread and reveal therapeutic opportunities.

JTD Keywords: dissemination, escape, mechanisms, progression, Perineural invasion


Ferrer, Isidro, Andrés-Benito, Pol, Sala-Jarque, Julia, Gil, Vanessa, del Rio, José Antonio, (2020). Capacity for seeding and spreading of argyrophilic grain disease in a wild-type murine model; Comparisons with primary age-related tauopathy Frontiers in Molecular Neuroscience 13, 101

Argyrophilic grain disease (AGD) is a common 4R-tauopathy, causing or contributing to cognitive impairment in the elderly. AGD is characterized neuropathologically by pre-tangles in neurons, dendritic swellings called grains, threads, thorn-shaped astrocytes, and coiled bodies in oligodendrocytes in the limbic system. AGD has a characteristic pattern progressively involving the entorhinal cortex, amygdala, hippocampus, dentate gyrus, presubiculum, subiculum, hypothalamic nuclei, temporal cortex, and neocortex and brainstem, thus suggesting that argyrophilic grain pathology is a natural model of tau propagation. One series of WT mice was unilaterally inoculated in the hippocampus with sarkosyl-insoluble and sarkosyl-soluble fractions from “pure” AGD at the age of 3 or 7/12 months and killed 3 or 7 months later. Abnormal hyper-phosphorylated tau deposits were found in ipsilateral hippocampal neurons, grains (dots) in the hippocampus, and threads, dots and coiled bodies in the fimbria, as well as the ipsilateral and contralateral corpus callosum. The extension of lesions was wider in animals surviving 7 months compared with those surviving 3 months. Astrocytic inclusions were not observed at any time. Tau deposits were mainly composed of 4Rtau, but also 3Rtau. For comparative purposes, another series of WT mice was inoculated with sarkosyl-insoluble fractions from primary age-related tauopathy (PART), a pure neuronal neurofibrillary tangle 3Rtau + 4Rtau tauopathy involving the deep temporal cortex and limbic system. Abnormal hyper-phosphorylated tau deposits were found in neurons in the ipsilateral hippocampus, coiled bodies and threads in the fimbria, and the ipsilateral and contralateral corpus callosum, which extended with time along the anterior-posterior axis and distant regions such as hypothalamic nuclei and nuclei of the septum when comparing mice surviving 7 months with mice surviving 3 months. Astrocytic inclusions were not observed. Tau deposits were mainly composed of 4Rtau and 3Rtau. These results show the capacity for seeding and spreading of AGD tau and PART tau in the brain of WT mouse, and suggest that characteristics of host tau, in addition to those of inoculated tau, are key to identifying commonalities and differences between human tauopathies and corresponding murine models.

JTD Keywords: Argyrophilic grain disease, Tauopathies, Tau, Seeding, Progression, Coiled Bodies, Primary age-related tauopathy


Torres, M., Martinez-Garcia, M. A., Campos-Rodriguez, F., Gozal, D., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2020). Lung cancer aggressiveness in an intermittent hypoxia murine model of postmenopausal sleep apnea Menopause 27, (6), 706-713

Objective: Intermittent hypoxia (IH)—a hallmark of obstructive sleep apnea (OSA)—enhances lung cancer progression in mice via altered host immune responses that are also age and sex-dependent. However, the interactions of menopause with IH on tumor malignant properties remain unexplored. Here, we aimed to investigate lung cancer outcomes in the context of ovariectomy (OVX)-induced menopause in a murine model of OSA. Methods: Thirty-four female mice (C57BL/6, 12-week-old) were subjected to bilateral OVX or to Sham intervention. Six months after surgery, mice were pre-exposed to either IH or room air (RA) for 2 weeks. Then, 105 lung carcinoma (LLC1) cells were injected subcutaneously in the left flank, with IH or RA exposures continued for 4 weeks. Tumor weight, tumor invasion, and spontaneous lung metastases were assessed. Tumor-associated macrophages (TAMs) were isolated and subjected to flow cytometry polarity evaluation along with assessment of TAMs modulation of LLC1 proliferation in vitro. To determine the effect of IH and OVX on each experimental variable, a two-way analysis of variance was performed. Results: IH and OVX promoted a similar increase in tumor growth (2-fold; P = 0.05 and 1.74-fold; P < 0.05, respectively), and OVX-IH further increased it. Regarding lung metastasis, the concurrence of OVX in mice exposed to IH enhanced the number of metastases (23.7 ± 8.0) in comparison to those without OVX (7.9 ± 2.8; P < 0.05). The pro-tumoral phenotype of TAMS, assessed as M2/M1 ratio, was increased in OVX (0.06 ± 0.01; P < 0.01) and IH (0.06 ± 0.01; P < 0.01) compared with sham/RA conditions (0.14 ± 0.03). The co-culture of TAMS with naive LLC1 cells enhanced their proliferation only under IH. Conclusion: In female mice, both the IH that is characteristically present in OSA and OVX as a menopause model emerge as independent contributors that promote lung cancer aggressiveness and seemingly operate through alterations in the host immune response.

JTD Keywords: Animal models, Cancer progression, Intermittent hypoxia, Menopause, Obstructive sleep apnea, Ovariectomy


Campillo, N., Falcones, B., Otero, J., Colina, R., Gozal, D., Navajas, D., Farré, R., Almendros, I., (2019). Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: Novel experimental settingand proof of concept Frontiers in Oncology 9, 43

Hypoxia is a common characteristic of many solid tumors that has been associated with tumor aggressiveness. Limited diffusion of oxygen generates a gradient of oxygen availability from the blood vessel to the interstitial space and may underlie the recruitment of macrophages fostering cancer progression. However, the available data based on the recruitment of circulating cells to the tumor microenvironment has been so far carried out by conventional co-culture systems which ignore the hypoxic gradient between the vessel to the tumor interstitium. Here, we have designed a novel easy-to-build cell culture device that enables evaluation of cellular cross-talk and cell migration while they are being simultaneously exposed to different oxygenation environments. As a proof-of-concept of the potential role of differential oxygenation among interacting cells we have evaluated the activation and recruitment of macrophages in response to hypoxic melanoma, breast, and kidney cancer cells. We found that hypoxic melanoma and breast cancer cells co-cultured with normoxic macrophages enhanced their directional migration. By contrast, hypoxic kidney cells were not able to increase their recruitment. We also identified well-described hypoxia-induced pathways which could contribute in the immune cell recruitment (VEGFA and PTGS2 genes). Moreover, melanoma and breast cancer increased their proliferation. However, oxygenation levels affected neither kidney cancer cell proliferation nor gene expression, which in turn resulted in no significant changes in macrophage migration and polarization. Therefore, the cell culture device presented here provides an excellent opportunity for researchers to reproduce the in vivo hypoxic gradients in solid tumors and to study their role in recruiting circulating cells to the tumor in specific types of cancer.

JTD Keywords: Hypoxia gradient, Macrophage motility, Models of host-tumor interactions, Novel assay technology, Tumor progression