DONATE

Publications

by Keyword: Prostheses

Garcia-de-Albeniz, N, Ginebra, MP, Jimenez-Piqué, E, Roa, JJ, Mas-Moruno, C, (2024). Influence of nanosecond laser surface patterning on dental 3Y-TZP: Effects on the topography, hydrothermal degradation and cell response Dental Materials 40, 139-150

Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response.A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated.The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns.The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: abutment material, alumina toughened zirconia, antibacterial, bacterial adhesion, biofilm growth, cell adhesion, dental implants, hydrothermal degradation, implant surfaces, in-vitro, laser patterning, osseointegration, osteogenic differentiation, part 1, surface topography, y-tzp ceramics, Antibacterial, Antibacterials, Bacteria, Bone, Cell adhesion, Cell culture, Cells adhesion, Ceramics, Chemistry, Degradation resistance, Dental implants, Dental material, Dental materials, Dental prostheses, Human, Human mesenchymal stem cells, Humans, Hydrothermal degradation, Laser patterning, Laser surface, Lasers, Low-temperature degradation, Materials testing, Microscopy, electron, scanning, Nanosecond lasers, Osseointegration, Piles, Scanning electron microscopy, Staphylococcus aureus, Stem cells, Surface analysis, Surface damages, Surface properties, Surface property, Surface topography, Topography, Yttrium, Zirconia, Zirconium


Gómez, SG, Guillem-Marti, J, Martín-Gómez, H, Mas-Moruno, C, Ginebra, MP, Gil, FJ, Barraquer, RI, Manero, JM, (2023). Titanium Boston keratoprosthesis with corneal cell adhesive and bactericidal dual coating Biomaterials Advances 154, 213654

The Boston keratoprosthesis (BKPro) is a medical device used to restore vision in complicated cases of corneal blindness. This device is composed by a front plate of polymethylmethacrylate (PMMA) and a backplate usually made of titanium (Ti). Ti is an excellent biomaterial with numerous applications, although there are not many studies that address its interaction with ocular cells. In this regard, despite the good retention rates of the BKPro, two main complications compromise patients' vision and the viability of the prosthesis: imperfect adhesion of the corneal tissue to the upside of the backplate and infections. Thus, in this work, two topographies (smooth and rough) were generated on Ti samples and tested with or without functionalization with a dual peptide platform. This molecule consists of a branched structure that links two peptide moieties to address the main complications associated with BKPro: the well-known RGD peptide in its cyclic version (cRGD) as cell pro-adherent motif and the first 11 residues of lactoferrin (LF1-11) as antibacterial motif. Samples were physicochemically characterized, and their biological response was evaluated in vitro with human corneal keratocytes (HCKs) and against the gram-negative bacterial strain Pseudomonas aeruginosa. The physicochemical characterization allowed to verify the functionalization in a qualitative and quantitative manner. A higher amount of peptide was anchored to the rough surfaces. The studies performed using HCKs showed increased long-term proliferation on the functionalized samples. Gene expression was affected by topography and peptide functionalization. Roughness promoted α-smooth muscle actin (α-SMA) overexpression, and the coating notably increased the expression of extracellular matrix components (ECM). Such changes may favour the development of unwanted fibrosis, and thus, corneal haze. In contrast, the combination of the coating with a rough topography decreased the expression of α-SMA and ECM components, which would be desirable for the long-term success of the prosthesis. Regarding the antibacterial activity, the functionalized smooth and rough surfaces promoted the death of bacteria, as well as a perturbation in their wall definition and cellular morphology. Bacterial killing values were 58 % for smooth functionalised and 68 % for rough functionalised samples. In summary, this study suggests that the use of the dual peptide platform with cRGD and LF1-11 could be a good strategy to improve the in vitro and in vivo performance of the rough topography used in the commercial BKPro.Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: binding, corneal blindness, differentiation, dual coating, iii collagen, in-vitro, infectious endophthalmitis, keratocyte, myofibroblast, peptide platform, proliferation, surface-roughness, titanium implant, Boston keratoprostheses, Corneal blindness, Dual coating, Gram-negative bacteria, Peptide platform, Titanium implant