by Keyword: Surface plasmon resonance

Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321

Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia

Parra-Monreal, V, Ortega-Machuca, MA, Ramin-Azcin, J, Svendsen, W, Romano-Rodriguez, A, Moreno-Sereno, M, (2021). Detection of cytokines in skeletal muscle tissue using optical SPR sensing platform Proceedings Of The 2021 13th Spanish Conference On Electron Devices, Cde 2021 , 102-105

In this work we have explored the use of a Surface Plasmon resonance (SPR) phenomenon for the detection of interleukin-6 (IL-6), a pro-inflammatory cytokine. It plays an important role in the muscle tissues, having direct relation with muscle contraction and, thus, it is considered a biomarker for some types of muscular dystrophies. Here we show that SPR can be used as a real-time monitoring of the shift of the reflectance dip of a gold diffraction grating in front to the antibody adhesion to gold.

JTD Keywords: antibodies, gratings, interleukin-6 (il-6), proteins, Antibodies, Gratings, Interleukin-6 (il-6), Proteins, Surface plasmon resonance

Mir, Mònica , Tahirbegi, Islam Bogachan , Valle-Delgado, Juan José , Fernàndez-Busquets, X., Samitier, Josep , (2012). In vitro study of magnetite-amyloid β complex formation Nanomedicine: Nanotechnology, Biology, and Medicine 8, (6), 974-980

Biogenic magnetite (Fe3O4) has been identified in human brain tissue. However, abnormal concentration of magnetite nanoparticles in the brain has been observed in different neurodegenerative pathologies. In the case of Alzheimer's disease (AD), these magnetic nanoparticles have been identified attached to the characteristic brain plaques, which are mainly formed by fibrils of amyloid β peptide (Aβ). However, few clues about the formation of the magnetite-Aβ complex have been reported. We have investigated the interaction between these important players in the AD with superconducting quantum interference, scanning electron microscope, surface plasmon resonance, and magnetic force microscopy. The results support the notion that the magnetite-Aβ complex is created before the synthesis of the magnetic nanoparticles, bringing a highly stable interaction of this couple.

JTD Keywords: Alzheimer's disease, Biogenic magnetite, Amyloid β peptide (Aβ), Superconducting quantum interference, Scanning electron microscope, Surface plasmon resonance, Magnetic force microscopy