DONATE

Publications

by Keyword: Targeting

Porro, GM, Lorandi, I, Liu, XY, Kataoka, K, Battaglia, G, Gonzalez-Carter, D, (2023). Identifying molecular tags selectively retained on the surface of brain endothelial cells to generate artificial targets for therapy delivery Fluids And Barriers Of The Cns 20, 88

Current strategies to identify ligands for brain delivery select candidates based on preferential binding to cell-membrane components (CMC) on brain endothelial cells (EC). However, such strategies generate ligands with inherent brain specificity limitations, as the CMC (e.g., the transferrin receptor TfR1) are also significantly expressed on peripheral EC. Therefore, novel strategies are required to identify molecules allowing increased specificity of therapy brain delivery. Here, we demonstrate that, while individual CMC are shared between brain EC and peripheral EC, their endocytic internalization rate is markedly different. Such differential endocytic rate may be harnessed to identify molecular tags for brain targeting based on their selective retention on the surface of brain EC, thereby generating 'artificial' targets specifically on the brain vasculature. By quantifying the retention of labelled proteins on the cell membrane, we measured the general endocytic rate of primary brain EC to be less than half that of primary peripheral (liver and lung) EC. In addition, through bio-panning of phage-displayed peptide libraries, we unbiasedly probed the endocytic rate of individual CMC of liver, lung and brain endothelial cells. We identified phage-displayed peptides which bind to CMC common to all three endothelia phenotypes, but which are preferentially endocytosed into peripheral EC, resulting in selective retention on the surface of brain EC. Furthermore, we demonstrate that the synthesized free-form peptides are capable of generating artificial cell-surface targets for the intracellular delivery of model proteins into brain EC with increasing specificity over time. The developed identification paradigm, therefore, demonstrates that the lower endocytic rate of individual CMC on brain EC can be harnessed to identify peptides capable of generating 'artificial' targets for the selective delivery of proteins into the brain vasculature. In addition, our approach identifies brain-targeting peptides which would have been overlooked by conventional identification strategies, thereby increasing the repertoire of candidates to achieve specific therapy brain delivery.© 2023. The Author(s).

JTD Keywords: brain endothelium, endocytic rates, ligand identification, nanoparticles, phage-display, Barrier, Brain endothelium, Brain targeting, Endocytic rates, Ligand identification, Phage-display


Resina, L, Alemán, C, Ferreira, FC, Esteves, T, (2023). Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnology Advances 68, 108220

Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: artificial antibodies, assay, biomimetics, biomolecules, biosensors, delivery, diagnostics, drug delivery, electrochemical detection, nanoparticles, receptors, science-and-technology, selective recognition, selective targeting, separation, templates, Artificial antibodies, Biomimetics, Biomolecules, Biosensors, Diagnostics, Drug delivery, Molecularly imprinted polymers, Nanoparticles, Selective targeting, Solid-phase synthesis


Dirisala, A, Li, JJ, Gonzalez-Carter, D, Wang, Z, (2023). Editorial: Delivery systems in biologics-based therapeutics Frontiers In Bioengineering And Biotechnology 11, 1274210

Liu, TY, De Pace, C, Huang, RD, Bruno, G, Shao, T, Tian, YP, Chen, B, Chen, L, Luo, K, Gong, QY, Ruiz-Pérez, L, Battaglia, G, Tian, XH, (2023). An Iridium (III) complex revealing cytoskeleton nanostructures under super-resolution nanoscopy and liquid-phase electron microscopy Sensors And Actuators B-Chemical 388, 133839

Live cell actin visualization is fundamental for exploring cellular motility, cytokinesis, intracellular transport, and other correlated functions. The current imaging techniques that allow imaging of actin in its native environment are optical and electron microscopy. Such imaging techniques offer high enough resolution to investigate the ultrastructure of actin however they come at the expense of actin integrity. Inspired by the lack of suitable probes that preserve actin's integrity, we designed a cyclometalated Ir (III) complex that interacts with live cells and displays light switch behaviour upon specific actin binding. The exceptional photophysical properties of the proposed probe allow unprecedented resolution of cytoskeleton ultrastructures under stimulated emission depletion (STED) super-resolution nanoscopy. Moreover, the Ir complex enables the capability of visualizing actin polymers and periodicity under correlative light electron microscopy (CLEM) and liquid-phase electron microscopy (LPEM) at similar to 8 nm resolution.

JTD Keywords: Actin dynamics, Actin targeting, Adhesion, Cells, Clem, Fluorescent, Iridium (iii) complex, Lead, Light, Lpem, Super-resolution ultrastructures


Woythe, L, Porciani, D, Harzing, T, van Veen, S, Burke, DH, Albertazzi, L, (2023). Valency and affinity control of aptamer-conjugated nanoparticles for selective cancer cell targeting Journal Of Controlled Release 355, 228-237

Nanoparticles (NPs) are commonly functionalized using targeting ligands to drive their selective uptake in cells of interest. Typical target cell types are cancer cells, which often overexpress distinct surface receptors that can be exploited for NP therapeutics. However, these targeted receptors are also moderately expressed in healthy cells, leading to unwanted off-tumor toxicities. Multivalent interactions between NP ligands and cell receptors have been investigated to increase the targeting selectivity towards cancer cells due to their non-linear response to receptor density. However, to exploit the multivalent effect, multiple variables have to be considered such as NP valency, ligand affinity, and cell receptor density. Here, we synthesize a panel of aptamer-functionalized silica-supported lipid bilayers (SSLB) to study the effect of valency, aptamer affinity, and epidermal growth factor receptor (EGFR) density on targeting specificity and selectivity. We show that there is an evident interplay among those parameters that can be tuned to increase SSLB selectivity towards high-density EGFR cells and reduce accumulation at non-tumor tissues. Specifically, the combination of high-affinity aptamers and low valency SSLBs leads to increased high-EGFR cell selectivity. These insights provide a better understanding of the multivalent interactions of NPs with cells and bring the nanomedicine field a step closer to the rational design of cancer nanotherapeutics.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: aptamer avidity and affinity, delivery, microscopy, multivalency, multivalent, nanoparticle targeting, silica -supported lipid bilayers, Aptamer avidity and affinity, Multivalency, Nanoparticle targeting, Silica-supported lipid bilayers, Supported lipid-bilayers, Tumor targeting


Woythe, L, Tholen, MME, Rosier, BJHM, Albertazzi, L, (2023). Single-Particle Functionality Imaging of Antibody-Conjugated Nanoparticles in Complex Media Acs Applied Bio Materials 6, 171-181

The properties of nanoparticles (NPs) can change upon contact with serum components, occluding the NP surface by forming a biomolecular corona. It is believed that targeted NPs can lose their functionality due to this biological coating, thus losing specificity and selectivity toward target cells and leading to poor therapeutic efficiency. A better understanding of how the biomolecular corona affects NP ligand functionality is needed to maintain NP targeting capabilities. However, techniques that can quantify the functionality of NPs at a single-particle level in a complex medium are limited and often laborious in sample preparation, measurement, and analysis. In this work, the influence of serum exposure on the functionality of antibody-functionalized NPs was quantified using a straightforward total internal reflection fluorescence (TIRF) microscopy method and evaluated in cell uptake studies. The single-particle resolution of TIRF reveals the interparticle functionality heterogeneity and the substantial differences between NPs conjugated with covalent and noncovalent methods. Notably, only NPs covalently conjugated with a relatively high amount of antibodies maintain their functionality to a certain extent and still showed cell specificity and selectivity toward high receptor density cells after incubation in full serum. The presented study emphasizes the importance of single-particle functional characterization of NPs in complex media, contributing to the understanding and design of targeted NPs that retain their cell specificity and selectivity in biologically relevant conditions.

JTD Keywords: binding, biomolecular corona, cell selectivity, heterogeneity, nanoparticle conjugation, protein corona, tirf microscopy, Active targeting, Biomolecular corona, Cell selectivity, Heterogeneity, Nanoparticle conjugation, Tirf microscopy


Roki, N, Solomon, M, Bowers, J, Getts, L, Getts, RC, Muro, S, (2022). Tuning Design Parameters of ICAM-1-Targeted 3DNA Nanocarriers to Optimize Pulmonary Targeting Depending on Drug Type Pharmaceutics 14, 1496

3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.

JTD Keywords: 3dna nanocarrier, acid sphingomyelinase, antibody, carrier design parameters, carriers, dna nanostructures, doxorubicin, drug type, icam-1, inflammation, lung targeting, multiparametric hierarchy, nanoparticles, size, 3dna nanocarrier, Intracellular delivery, Multiparametric hierarchy


Muntimadugu, E, Silva-Abreu, M, Vives, G, Loeck, M, Pham, V, Del Moral, M, Solomon, M, Muro, S, (2022). Comparison between Nanoparticle Encapsulation and Surface Loading for Lysosomal Enzyme Replacement Therapy International Journal Of Molecular Sciences 23, 4034

Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) enhance the delivery of therapeutic enzymes for replacement therapy of lysosomal storage disorders. Previous studies examined NPs encapsulating or coated with enzymes, but these formulations have never been compared. We examined this using hyaluronidase (HAse), deficient in mucopolysaccharidosis IX, and acid sphingomyelinase (ASM), deficient in types A–B Niemann–Pick disease. Initial screening of size, PDI, ζ potential, and loading resulted in the selection of the Lactel II co-polymer vs. Lactel I or Resomer, and Pluronic F68 surfactant vs. PVA or DMAB. Enzyme input and addition of carrier protein were evaluated, rendering NPs having, e.g., 181 nm diameter, 0.15 PDI, −36 mV ζ potential, and 538 HAse molecules encapsulated per NP. Similar NPs were coated with enzyme, which reduced loading (e.g., 292 HAse molecules/NP). NPs were coated with targeting antibodies (> 122 molecules/NP), lyophilized for storage without alterations, and acceptably stable at physiological conditions. NPs were internalized, trafficked to lysosomes, released active enzyme at lysosomal conditions, and targeted both peripheral organs and the brain after i.v. administration in mice. While both formulations enhanced enzyme delivery compared to free enzyme, encapsulating NPs surpassed coated counterparts (18.4- vs. 4.3-fold enhancement in cells and 6.2- vs. 3-fold enhancement in brains), providing guidance for future applications.

JTD Keywords: active enzymes, encapsulation, enhanced delivery, enzyme therapeutics, formulation parameters, icam-1 targeting, icam-1-targeted nanocarriers, in vivo biodistribution, in-vitro, lysosomal delivery, model, oral delivery, plga nanoparticles, poly(lactic-co-glycolic acid) nanoparticles, protein therapeutics, surface loading, Acid sphingomyelinase, Enzyme therapeutics, Surface loading


Woythe, L, Madhikar, P, Feiner-Gracia, N, Storm, C, Albertazzi, L, (2022). A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density Acs Nano 16, 3785-3796

Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.

JTD Keywords: active targeting, active targeting dstorm, antibodies, dstorm, heterogeneity, multivalency, nanomedicine, nanoparticle functionality, size, super-resolution microscopy, surface, Active targeting, Antibodies, Cell membranes, Cell receptors, Cytology, Direct stochastic optical reconstruction microscopy, Dstorm, Heterogeneity, Ligands, Medical nanotechnology, Molecules, Nanomedicine, Nanoparticle functionality, Nanoparticle targeting, Nanoparticles, Optical reconstruction, Single molecule, Stochastic systems, Stochastics, Super-resolution microscopy, Superresolution microscopy


Manthe, Rachel L., Loeck, Maximilian, Bhowmick, Tridib, Solomon, Melani, Muro, Silvia, (2020). Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme Journal of Controlled Release 324, 181-193

The interaction of drug delivery systems with tissues is key for their application. An example is drug carriers targeted to endothelial barriers, which can be transported to intra-endothelial compartments (lysosomes) or transcellularly released at the tissue side (transcytosis). Although carrier targeting valency influences this process, the mechanism is unknown. We studied this using polymer nanocarriers (NCs) targeted to intercellular adhesion molecule-1 (ICAM-1), an endothelial-surface glycoprotein whose expression is increased in pathologies characterized by inflammation. A bell-shaped relationship was found between NC targeting valency and the rate of transcytosis, where high and low NC valencies rendered less efficient transcytosis rates than an intermediate valency formulation. In contrast, an inverted bell-shape relationship was found for NC valency and lysosomal trafficking rates. Data suggested a model where NC valency plays an opposing role in the two sub-processes involved in transcytosis: NC binding-uptake depended directly on valency and exocytosis-detachment was inversely related to this parameter. This is because the greater the avidity of the NC-receptor interaction the more efficient uptake becomes, but NC-receptor detachment post-transport is more compromised. Cleavage of the receptor at the basolateral side of endothelial cells facilitated NC transcytosis, likely by helping NC detachment post-transport. Since transcytosis encompasses both sets of events, the full process finds an optimum at the intersection of these inverted relationships, explaining the bell-shaped behavior. NCs also trafficked to lysosomes from the apical side and, additionally, from the basolateral side in the case of high valency NCs which are slower at detaching from the receptor. This explains the opposite behavior of NC valency for transcytosis vs. lysosomal transport. Anti-ICAM NCs were verified to traffic into the brain after intravenous injection in mice, and both cellular and in vivo data showed that intermediate valency NCs resulted in higher delivery of a therapeutic enzyme, acid sphingomyelinase, required for types A and B Niemann-Pick disease.

JTD Keywords: Blood-brain barrier, ICAM-1-targeted nanocarriers, Targeting valency, Receptor-mediated transport, Lysosomal transcytosis destinations


Hortelão, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano 13, (1), 429-439

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

JTD Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting


Roki, N., Tsinas, Z., Solomon, M., Bowers, J., Getts, R. C., Muro, S., (2019). Unprecedently high targeting specificity toward lung ICAM-1 using 3DNA nanocarriers Journal of Controlled Release 305, 41-49

DNA nanostructures hold great potential for drug delivery. However, their specific targeting is often compromised by recognition by scavenger receptors involved in clearance. In our previous study in cell culture, we showed targeting specificity of a 180 nm, 4-layer DNA-built nanocarrier called 3DNA coupled with antibodies against intercellular adhesion molecule-1 (ICAM-1), a glycoprotein overexpressed in the lungs in many diseases. Here, we examined the biodistribution of various 3DNA formulations in mice. A formulation consisted of 3DNA whose outer-layer arms were hybridized to secondary antibody-oligonucleotide conjugates. Anchoring IgG on this formulation reduced circulation and kidney accumulation vs. non-anchored IgG, while increasing liver and spleen clearance, as expected for a nanocarrier. Anchoring anti-ICAM changed the biodistribution of this antibody similarly, yet this formulation specifically accumulated in the lungs, the main ICAM-1 target. Since lung targeting was modest (2-fold specificity index over IgG formulation), we pursued a second preparation involving direct hybridization of primary antibody-oligonucleotide conjugates to 3DNA. This formulation had prolonged stability in serum and showed a dramatic increase in lung distribution: the specificity index was 424-fold above a matching IgG formulation, 144-fold more specific than observed for PLGA nanoparticles of similar size, polydispersity, ζ-potential and antibody valency, and its lung accumulation increased with the number of anti-ICAM molecules per particle. Immunohistochemistry showed that anti-ICAM and 3DNA components colocalized in the lungs, specifically associating with endothelial markers, without apparent histological changes. The degree of in vivo targeting for anti-ICAM/3DNA-nanocarriers is unprecedented, for which this platform technology holds great potential to develop future therapeutic applications.

JTD Keywords: 3DNA, DNA nanostructure, Drug nanocarrier, Endothelial and lung targeting, ICAM-1, In vivo biodistribution


Feiner-Gracia, Natalia, Beck, Michaela, Pujals, Sílvia, Tosi, Sébastien, Mandal, Tamoghna, Buske, Christian, Linden, Mika, Albertazzi, Lorenzo, (2017). Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona Small 13, (41), 1701631

The adsorption of serum proteins, leading to the formation of a biomolecular corona, is a key determinant of the biological identity of nanoparticles in vivo. Therefore, gaining knowledge on the formation, composition, and temporal evolution of the corona is of utmost importance for the development of nanoparticle-based therapies. Here, it is shown that the use of super-resolution optical microscopy enables the imaging of the protein corona on mesoporous silica nanoparticles with single protein sensitivity. Particle-by-particle quantification reveals a significant heterogeneity in protein absorption under native conditions. Moreover, the diversity of the corona evolves over time depending on the surface chemistry and degradability of the particles. This paper investigates the consequences of protein adsorption for specific cell targeting by antibody-functionalized nanoparticles providing a detailed understanding of corona-activity relations. The methodology is widely applicable to a variety of nanostructures and complements the existing ensemble approaches for protein corona study.

JTD Keywords: Heterogeneity, Mesoporous silica nanoparticles, Protein corona, Super-resolution imaging, Targeting


Garreta, E., de Oñate, L., Fernández-Santos, M. E., Oria, R., Tarantino, C., Climent, A. M., Marco, A., Samitier, M., Martínez, Elena, Valls-Margarit, M., Matesanz, R., Taylor, D. A., Fernández-Avilés, F., Izpisua Belmonte, J. C., Montserrat, N., (2016). Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts Biomaterials 98, 64-78

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

JTD Keywords: Cardiac function, Extracellular matrix, Gene targeting, Pluripotent stem cells


Castangia, I., Nácher, A., Caddeo, C., Merino, V., Díez-Sales, O., Catalán-Latorre, A., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats Acta Biomaterialia 13, 216-227

Biocompatible quercetin nanovesicles were developed by coating polyethylene glycol-containing vesicles with chitosan and nutriose, aimed at targeting the colon. Uncoated and coated vesicles were prepared using hydrogenated soy phosphatidylcholine and quercetin, a potent natural anti-inflammatory and antioxidant drug. Physicochemical characterization was carried out by light scattering, cryogenic microscopy and X-ray scattering, the results showing that vesicles were predominantly multilamellar and around 130 nm in size. The in vitro release of quercetin was investigated under different pH conditions simulating the environment of the gastrointestinal tract, and confirmed that the chitosan/nutriose coating improved the gastric resistance of vesicles, making them a potential carrier system for colon delivery. The preferential localization of fluorescent vesicles in the intestine was demonstrated using the In Vivo FX PRO Imaging System. Above all, a marked amelioration of symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis was observed in animals treated with quercetin-loaded coated vesicles, favoring the restoration of physiological conditions. Therefore, quercetin-loaded chitosan/nutriose-coated vesicles can represent a valuable therapeutic tool for the treatment of chronic intestinal inflammatory diseases, and presumably a preventive system, due to the synergic action of antioxidant quercetin and beneficial prebiotic effects of the chitosan/nutriose complex.

JTD Keywords: Chitosan/nutriose complex, Colon targeting, Phospholipid vesicles, Quercetin, Rat colitis


Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

JTD Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy


Urban, P., Valle-Delgado, J. J., Moles, E., Marques, J., Diez, C., Fernàndez-Busquets, X., (2012). Nanotools for the delivery of antimicrobial peptides Current Drug Targets , 13, (9), 1158-1172

Antimicrobial peptide drugs are increasingly attractive therapeutic agents as their roles in physiopathological processes are being unraveled and because the development of recombinant DNA technology has made them economically affordable in large amounts and high purity. However, due to lack of specificity regarding the target cells, difficulty in attaining them, or reduced half-lives, most current administration methods require high doses. On the other hand, reduced specificity of toxic drugs demands low concentrations to minimize undesirable side-effects, thus incurring the risk of having sublethal amounts which favour the appearance of resistant microbial strains. In this scenario, targeted delivery can fulfill the objective of achieving the intake of total quantities sufficiently low to be innocuous for the patient but that locally are high enough to be lethal for the infectious agent. One of the major advances in recent years has been the size reduction of drug carriers that have dimensions in the nanometer scale and thus are much smaller than -and capable of being internalized by- many types of cells. Among the different types of potential antimicrobial peptide-encapsulating structures reviewed here are liposomes, dendritic polymers, solid core nanoparticles, carbon nanotubes, and DNA cages. These nanoparticulate systems can be functionalized with a plethora of biomolecules providing specificity of binding to particular cell types or locations; as examples of these targeting elements we will present antibodies, DNA aptamers, cell-penetrating peptides, and carbohydrates. Multifunctional Trojan horse-like nanovessels can be engineered by choosing the adequate peptide content, encapsulating structure, and targeting moiety for each particular application.

JTD Keywords: Antibodies, Aptamers, Dendrimers, Liposomes, Nanomedicine, Nanoparticles, Nanovectors, Targeting