by Keyword: Thermodynamics
Cicconofri, Giancarlo, Blanco, Pau, Vilanova, Guillermo, Saez, Pablo, Arroyo, Marino, (2024). Active interfacial degradation/deposition of an elastic matrix by a fluid inclusion: Theory and pattern formation Journal Of The Mechanics And Physics Of Solids 191, 105773
During collective invasion in 3D, cohesive cellular tissues migrate within a fibrous extracellular matrix (ECM). This process requires significant remodeling of the ECM by cells, notably proteolysis at the cell-ECM interface by specialized molecules. Motivated by this problem, we develop a theoretical framework to study the dynamics of a fluid inclusion (modeling the cellular tissue) embedded in an elastic matrix (the ECM), which undergoes surface degradation/deposition. To account for the active nature of this process, we develop a continuum theory based on irreversible thermodynamics, leading to a kinetic relation for the degradation front that locally resembles the force-velocity relation of a molecular motor. We further study the effect of mechanotransduction on the stability of the cell-ECM interface, finding a variety of self- organized dynamical patterns of collective invasion. Our work identifies ECM proteolysis as an active process possibly driving the self-organization of cellular tissues.
JTD Keywords: Accretion, Accretion and erosion, Active matter, Cell-migration, Collective invasion, Growth, Insight, Irreversible thermodynamics, Mechanics, Model, Morphogenesis, Moving non-material interfaces, Pattern formatio, Proteolysis, Surface, Surface growth
De Corato, M, Arroyo, M, (2022). A theory for the flow of chemically responsive polymer solutions: Equilibrium and shear-induced phase separation Journal Of Rheology 66, 813-835
Chemically responsive polymers are macromolecules that respond to local variations of the chemical composition of the solution by changing their conformation, with notable examples including polyelectrolytes, proteins, and DNA. The polymer conformation changes can occur in response to changes in the pH, the ionic strength, or the concentration of a generic solute that interacts with the polymer. These chemical stimuli can lead to drastic variations of the polymer flexibility and even trigger a transition from a coil to a globule polymer conformation. In many situations, the spatial distribution of the chemical stimuli can be highly inhomogeneous, which can lead to large spatial variations of polymer conformation and of the rheological properties of the mixture. In this paper, we develop a theory for the flow of a mixture of solute and chemically responsive polymers. The approach is valid for generic flows and inhomogeneous distributions of polymers and solutes. To model the polymer conformation changes introduced by the interactions with the solute, we consider the polymers as linear elastic dumbbells whose spring stiffness depends on the solute concentration. We use Onsager's variational formalism to derive the equations governing the evolution of the variables, which unveils novel couplings between the distribution of dumbbells and that of the solute. Finally, we use a linear stability analysis to show that the governing equations predict an equilibrium phase separation and a distinct shear-induced phase separation whereby a homogeneous distribution of solute and dumbbells spontaneously demix. Similar phase transitions have been observed in previous experiments using stimuli-responsive polymers and may play an important role in living systems. (C) 2022 The Society of Rheology.
JTD Keywords: Coil-globule transition, Constitutive equation, Dilute-solutions, Dumbbell model, Dynamics, Macromolecules, Nonequilibrium thermodynamics, Polyelectrolytes, Polymer migration, Polymer phase separation, Polymers, Predictions, Rheology, Shear-induced phase separation, Solute-polymer interactions, Stress, Viscoelasticity
Redondo-Morata, Lorena, Losada-Pérez, Patricia, Giannotti, Marina Inés, (2020). Lipid bilayers: Phase behavior and nanomechanics Current Topics in Membranes (ed. Levitan, Irena, Trache, Andreea), Academic Press (Berlin, Germany) 86, 1-55
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
JTD Keywords: Lipid phase behavior, Phase transition, Phase coexistence, Nanomechanics, Thermodynamics, Atomic force microscopy (AFM), Quartz crystal microbalance with dissipation monitoring (QCM-D)