by Keyword: apoptosis

Alcon C, Martín F, Prada E, Mora J, Soriano A, Guillén G, Gallego S, Roma J, Samitier J, Villanueva A, Montero J, (2022). MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment Cell Death Discov 8, 172

Targeted agents have emerged as promising molecules for cancer treatment, but most of them fail to achieve complete tumor regression or attain durable remissions due to tumor adaptations. We used dynamic BH3 profiling to identify targeted agents effectiveness and anti-apoptotic adaptations upon targeted treatment in rhabdomyosarcoma. We focused on studying the use of BH3 mimetics to specifically inhibit pro-survival BCL-2 family proteins, overwhelm resistance to therapy and prevent relapse. We observed that the MEK1/2 inhibitor trametinib rapidly depleted the pro-apoptotic protein NOXA, thus increasing MCL-1 availability. Indeed, we found that the MCL-1 inhibitor S63845 synergistically enhanced trametinib cytotoxicity in rhabdomyosarcoma cells in vitro and in vivo. In conclusion, our findings indicate that the combination of a BH3 mimetic targeting MCL-1 with trametinib improves efficiency on rhabdomyosarcoma by blocking tumor adaptation to treatment.

JTD Keywords: apoptosis, bcl-2, combination, expression, pathway, resistance, survival, therapy, tumors, Histone deacetylase inhibitor

Gawish R, Starkl P, Pimenov L, Hladik A, Lakovits K, Oberndorfer F, Cronin SJF, Ohradanova-Repic A, Wirnsberger G, Agerer B, Endler L, Capraz T, Perthold JW, Cikes D, Koglgruber R, Hagelkruys A, Montserrat N, Mirazimi A, Boon L, Stockinger H, Bergthaler A, Oostenbrink C, Penninger JM, Knapp S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, mavie16, mouse, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence

Pepe, G, Sfogliarini, C, Rizzello, L, Battaglia, G, Pinna, C, Rovati, G, Ciana, P, Brunialti, E, Mornata, F, Maggi, A, Locati, M, Vegeto, E, (2021). ER alpha-independent NRF2-mediated immunoregulatory activity of tamoxifen Biomedicine & Pharmacotherapy 144, 112274

Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ER alpha)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages. Using primary cultures of female mouse macrophages, we analyzed the expression of immune mediators and activation of effector functions in competition experiments with SERMs and 17 beta-estradiol (E2) or the bacterial endotoxin LPS. We observed that 4HT and TAM induce estrogen antagonist effects when used at nanomolar concentrations, while pharmacological concentrations that are reached by TAM in clinical settings regulate the expression of VEGF alpha and other immune activation genes by ER alpha- and G protein-coupled receptor 1 (GPER1)-independent mechanisms that involve NRF2 through PI3K/Akt-dependent mechanisms. Importantly, we observed that SERMs potentiate cell phagocytosis and modify the effects of LPS on the expression of inflammatory cytokines, such as TNF alpha and IL1 beta, with an overall increase in cell inflammatory phenotype, further sustained by potentiation of IL1 beta secretion through caspase-1 activation.

JTD Keywords: drug repurposing, inflammation, macrophage, nrf2, Apoptosis, Breast-cancer, Drug repurposing, Expression, Inflammation, Macrophage, Nrf2, Resistance, Sex-differences, Tamoxifen, Tumor-associated macrophages

Schroeder, Barbara, Vander Steen, Travis, Espinoza, Ingrid, Venkatapoorna, Chandra MKurapaty, Hu, Zeng, Silva, Fernando Martín, Regan, Kevin, Cuyàs, Elisabet, Meng, XWei, Verdura, Sara, Arbusà, Aina, Schneider, Paula A., Flatten, Karen S., Kemble, George, Montero, Joan, Kaufmann, Scott H., Menendez, Javier A., Lupu, Ruth, (2021). Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells Cell Death & Disease 12, 977

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state “addicted” to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.

JTD Keywords: activation, apoptosis, bh3 mimetics, cytochrome-c, death, inhibition, metabolism, pathways, venetoclax, Bcl-2 family

Manzano-Muñoz A, Alcon C, Menéndez P, Ramírez M, Seyfried F, Debatin KM, Meyer LH, Samitier J, Montero J, (2021). MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia Frontiers In Cell And Developmental Biology 9, 695225

Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 – a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.

JTD Keywords: apoptosis, bh3 mimetics, cancer, dependence, increases, kinase inhibition, pediatric leukemia, precision medicine, resistance, sensitivity, targeted therapies, tumor-cells, venetoclax, Apoptosis, Bcl-2 family proteins, Bh3 mimetics, Pediatric leukemia, Resistance, Targeted therapies

Alcon C, Gómez Tejeda Zañudo J, Albert R, Wagle N, Scaltriti M, Letai A, Samitier J, Montero J, (2021). ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins Cells 10, 1659

Breast cancer is the most frequent type of cancer and the major cause of mortality in women. The rapid development of various therapeutic options has led to the improvement of treatment outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer. We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition, we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option for refractory and relapsed ER+ breast cancer tumors.

JTD Keywords: apoptosis, bh3 mimetics, cell-line, chemotherapy, classification, dbp, death, er+ breast cancer, fulvestrant, her2, inhibitor, kinase, pik3ca, priming, resistance, targeted therapies, Apoptosis, Bh3 mimetics, Dbp, Endocrine therapy, Er plus breast cancer, Er+ breast cancer, Priming, Resistance, Targeted therapies

Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-48

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing

Fernàndez-Busquets, X., Ponce, J., Bravo, R., Arimon, M., Martianez, T., Gella, A., Cladera, J., Durany, N., (2010). Modulation of amyloid beta peptide(1-42) cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate Current Alzheimer Research , 7, (5), 428-438

One mechanism leading to neurodegeneration during Alzheimer's Disease (AD) is amyloid beta peptide (A beta)-induced neurotoxicity. Among the factors proposed to potentiate A beta toxicity is its covalent modification through carbohydrate-derived advanced glycation endproducts (AGEs). Other experimental evidence, though, indicates that certain polymeric carbohydrates like the glycosaminoglycan (GAG) chains found in proteoglycan molecules attenuate the neurotoxic effect of A beta in primary neuronal cultures. Pretreatment of the 42-residue A beta fragment (A beta(1-42)) with the ubiquitous brain carbohydrates, glucose, fructose, and the GAG chondroitin sulfate B (CSB) inhibits A beta beta(1-42)-induced apoptosis and reduces the peptide neurotoxicity on neuroblastoma cells, a cytoprotective effect that is partially reverted by AGE inhibitors such as pyridoxamine and L-carnosine. Thioflavin T fluorescence measurements indicate that at concentrations close to physiological, only CSB promotes the formation of A beta amyloid fibril structure. Atomic force microscopy imaging and Western blot analysis suggest that glucose favours the formation of globular oligomeric structures derived from aggregated species. Our data suggest that at short times carbohydrates reduce A beta(1-42) toxicity through different mechanisms both dependent and independent of AGE formation.

JTD Keywords: Alzheimer's disease, Advanced glycation endproducts, Amyloid fibrils, Amyloid beta peptide, Apoptosis, Carbohydrates, Glycosaminoglycans

Almendros, I., Montserrat, J. M., Torres, M., Gonzalez, C., Navajas, D., Farre, R., (2010). Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea Respiratory Research , 11, (3), 1-6

Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO(2)) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O-2 supply during recurrent swings in arterial SpO(2) in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO(2) was measured by pulse oximetry. The time dependence of arterial SpO(2) and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO(2) showed a stable periodic pattern (no significant changes in maximum [95.5 +/- 0.5%; m +/- SE] and minimum values [83.9 +/- 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO(2). The minimum cerebral cortex PtO2 computed during the first apnea (29.6 +/- 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 +/- 2.9 mmHg; p = 0.011). In contrast to SpO(2), the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 +/- 3.9 mmHg) and minimum (43.7 +/- 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O-2 supply induced by obstructive apneas mimicking OSA.

JTD Keywords: Near-infrared spectroscopy, Sleep-apnea, Iintermittent hypoxia, Cerebral oxygenation, Oxidative stress, Blood-flow, Rat, Apoptosis, Inflammation, Hypercapnia