DONATE

Publications

by Keyword: blood-plasma

Englert, J, Palà, M, Witzdam, L, Rayatdoost, F, Grottke, O, Lligadas, G, Rodriguez-Emmenegger, C, (2023). Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility Langmuir 39, 18476-18485

Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.

JTD Keywords: blood-plasma, coatings, contact, fossil, poly(2-methacryloyloxyethyl phosphorylcholine), protein adsorption, resistance, self-assembled monolayers, sulfobetaine, Surface-energy components


Witzdam, L, Garay-Sarmiento, M, Gagliardi, M, Meurer, YL, Rutsch, Y, Englert, J, Philipsen, S, Janem, A, Alsheghri, R, Jakob, F, Molin, DGM, Schwaneberg, U, van den Akker, NMS, Rodriguez-Emmenegger, C, (2023). Brush-Like Coatings Provide a Cloak of Invisibility to Titanium Implants Macromolecular Bioscience , e2300434

Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure. Here, two readily applicable titanium-coatings based on hydrophilic carboxybetaine polymers that turn the surface stealth thereby preventing bacterial adhesion and colonization are developed. These coatings are biocompatible, do not affect cell functionality, exhibit great antifouling properties, and do not cause additional inflammation during the healing process. In this way, the coatings can prevent implant-related infections, while at the same time being completely innocuous to its biological environment. Thus, these coating strategies are a promising route to enhance the biocompatibility of orthopedic implants and have a high potential for clinical use, while being easy to implement in the implant manufacturing process.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.

JTD Keywords: bacteria repellency, biocompatibility, blood-plasma, brushes, stealth coatings, surface, titanium implants, Antifouling surfaces, Bacteria repellency, Biocompatibility, Brushes, Polymer brushes, Stealth coatings, Titanium implants


Riedelová, Z, Pereira, AD, Svoboda, J, Pop-Georgievski, O, Májek, P, Pecánková, K, Dycka, F, Rodriguez-Emmenegger, C, Riedel, T, (2022). The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes Macromolecular Bioscience 22, 2200247

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.

JTD Keywords: antifouling surfaces, biosensor, blood-plasma, coagulation, coatings, compatibility, glycoprotein, hemocompatibility, identification, methacrylate), ms identification, polymer brushes, protein adsorption, surface-chemistry, Antifouling surfaces, High-density-lipoprotein, Protein adsorption


Yang, BQ, Wang, YX, Vorobii, M, Sauter, E, Koenig, M, Kumar, R, Rodriguez-Emmenegger, C, Hirtz, M, (2022). Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido-Functionalized Antifouling Polymer Brushes via Microspotting Advanced Materials Interfaces 9, 2102325