by Keyword: breast-cancer
Blauth, Eliane, Grosser, Steffen, Sauer, Frank, Merkel, Mario, Kubitschke, Hans, Warmt, Enrico, Morawetz, Erik W, Friedrich, Philip, Wolf, Benjamin, Briest, Susanne, Hiller, Grit Gesine Ruth, Horn, Lars-Christian, Aktas, Bahriye, Kaes, Josef A, (2024). Different contractility modes control cell escape from multicellular spheroids and tumor explants Apl Bioengineering 8, 026110
Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM. We compare multicellular spheroids from a panel of breast cancer cell lines with primary tumor explants from breast and cervical cancer patients by measuring matrix contraction and cellular spreading into ECM mimicking collagen matrices. Our results in spheroids suggest that tumor aggressiveness is associated with elevated contractile traction and reduced active tissue surface tension, allowing cancer cell escape. We show that it is not a binary switch but rather the interplay between these two contractility modes that is essential during this process. We provide further evidence in patient-derived tumor explants that these two contractility modes impact cancer cells' ability to leave cell clusters within a primary tumor. Our results indicate that cellular contractility is an essential factor during the formation of metastases and thus may be suitable as a prognostic criterion for the assessment of tumor aggressiveness.
JTD Keywords: Breast-cancer, Disease, Emt, Forces, Hypothesis, Intercellular-adhesion, Myoepithelial cell, Stiffness, Wetting transition
Duch, P, Díaz-Valdivia, N, Gabasa, M, Ikemori, R, Arshakyan, M, Fernández-Nogueira, P, Llorente, A, Teixido, C, Ramírez, J, Pereda, J, Chuliá-Peris, L, Galbis, JM, Hilberg, F, Reguart, N, Radisky, DC, Alcaraz, J, (2024). Aberrant TIMP-1 production in tumor-associated fibroblasts drives the selective benefits of nintedanib in lung adenocarcinoma Cancer Science 115, 1505-1519
The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.
JTD Keywords: Cancer-associated fibroblast,fibrosis,nintedanib,non-small-cell lung cancer,smad3,therapy resistance,timp-, Cell carcinoma,breast-cancer,expression,progression,inhibitor,blockade,efficac
Gallo, J, Villasante, A, (2023). Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment International Journal Of Molecular Sciences 24, 15484
Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.
JTD Keywords: biomimetic nanoparticles, cancer treatment, diagnosis, drug-delivery, erythrocyte-membrane, facile synthesis, iron-oxide nanoparticles, magnetic nanoparticles, membrane-camouflaged nanoparticles, metastatic breast-cancer, size, stem-cells, Biomimetic nanoparticles, Cancer treatment, Membrane-camouflaged nanoparticles, Photothermal therapy
Narciso, M, Martínez, A, Júnior, C, Díaz-Valdivia, N, Ulldemolins, A, Berardi, M, Neal, K, Navajas, D, Farré, R, Alcaraz, J, Almendros, I, Gavara, N, (2023). Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin Cancers 15, 2404
Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.
JTD Keywords: atomic force microscopy, basement membrane, breast-cancer, decellularization, expression, extracellular matrix, extracellular-matrix, fibronectin, intermittent hypoxia, lung carcinoma, lung metastases, melanoma, metastatic niche formation, micromechanical properties, nintedanib, signature, stiffness, tumor-growth, Colorectal-cancer progression, Lung metastases, Stiffness
El Hauadi, K, Resina, L, Zanuy, D, Esteves, T, Ferreira, FC, Pérez-Madrigal, MM, Alemán, C, (2022). Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides Langmuir 38, 12905-12914
CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.
JTD Keywords: aggregation, amphiphilic peptides, breast-cancer, cells, design, oxidative stress, resistance, strategy, Molecular-dynamics
Rivas, EI, Linares, J, Zwick, M, Gómez-Llonin, A, Guiu, M, Labernadie, A, Badia-Ramentol, J, Lladó, A, Bardia, L, Pérez-Núñez, I, Martínez-Ciarpaglini, C, Tarazona, N, Sallent-Aragay, A, Garrido, M, Celià-Terrassa, T, Burgués, O, Gomis, RR, Albanell, J, Calon, A, (2022). Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors Nature Communications 13, 5310
About 50% of human epidermal growth factor receptor 2 (HER2)+ breast cancer patients do not benefit from HER2-targeted therapy and almost 20% of them relapse after treatment. Here, we conduct a detailed analysis of two independent cohorts of HER2+ breast cancer patients treated with trastuzumab to elucidate the mechanisms of resistance to anti-HER2 monoclonal antibodies. In addition, we develop a fully humanized immunocompetent model of HER2+ breast cancer recapitulating ex vivo the biological processes that associate with patients’ response to treatment. Thanks to these two approaches, we uncover a population of TGF-beta-activated cancer-associated fibroblasts (CAF) specific from tumors resistant to therapy. The presence of this cellular subset related to previously described myofibroblastic (CAF-S1) and podoplanin+ CAF subtypes in breast cancer associates with low IL2 activity. Correspondingly, we find that stroma-targeted stimulation of IL2 pathway in unresponsive tumors restores trastuzumab anti-cancer efficiency. Overall, our study underscores the therapeutic potential of exploiting the tumor microenvironment to identify and overcome mechanisms of resistance to anti-cancer treatment.
JTD Keywords: activation, cells, efficacy, enrichment analysis, expression, infiltrating lymphocytes, survival, therapy, trastuzumab, Her2-positive breast-cancer
Pepe, G, Sfogliarini, C, Rizzello, L, Battaglia, G, Pinna, C, Rovati, G, Ciana, P, Brunialti, E, Mornata, F, Maggi, A, Locati, M, Vegeto, E, (2021). ER alpha-independent NRF2-mediated immunoregulatory activity of tamoxifen Biomedicine & Pharmacotherapy 144, 112274
Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ER alpha)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages. Using primary cultures of female mouse macrophages, we analyzed the expression of immune mediators and activation of effector functions in competition experiments with SERMs and 17 beta-estradiol (E2) or the bacterial endotoxin LPS. We observed that 4HT and TAM induce estrogen antagonist effects when used at nanomolar concentrations, while pharmacological concentrations that are reached by TAM in clinical settings regulate the expression of VEGF alpha and other immune activation genes by ER alpha- and G protein-coupled receptor 1 (GPER1)-independent mechanisms that involve NRF2 through PI3K/Akt-dependent mechanisms. Importantly, we observed that SERMs potentiate cell phagocytosis and modify the effects of LPS on the expression of inflammatory cytokines, such as TNF alpha and IL1 beta, with an overall increase in cell inflammatory phenotype, further sustained by potentiation of IL1 beta secretion through caspase-1 activation.
JTD Keywords: drug repurposing, inflammation, macrophage, nrf2, Apoptosis, Breast-cancer, Drug repurposing, Expression, Inflammation, Macrophage, Nrf2, Resistance, Sex-differences, Tamoxifen, Tumor-associated macrophages