by Keyword: endothelium

Palma-Florez, S, Lagunas, A, Mir, M, (2024). Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model Neural Regeneration Research 19, 1165-1166

Román-Alamo, L, Avalos-Padilla, Y, Bouzón-Arnáiz, I, Iglesias, V, Fernández-Lajo, J, Monteiro, JM, Rivas, L, Fisa, R, Riera, C, Andreu, D, Pintado-Grima, C, Ventura, S, Arce, EM, Muñoz-Torrero, D, Fernàndez-Busquets, X, (2024). Effect of the aggregated protein dye YAT2150 on Leishmania parasite viability Antimicrobial Agents And Chemotherapy 68, e01127-23

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 mu M against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 mu M in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 mu M. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.

JTD Keywords: Animal, Animals, Antileishmanial drugs, Antileishmanial drugs,leishmania,protein aggregation,yat215, Antiprotozoal agent, Antiprotozoal agents, Axenic amastigotes,differentiation,colocalization,identification,discovery,yeas, Endothelial cells, Endothelium cell, Human, Humans, Leishmania, Leishmania infantum, Leishmaniasis, Parasite, Parasites, Protein aggregation, Yat2150

Porro, GM, Lorandi, I, Liu, XY, Kataoka, K, Battaglia, G, Gonzalez-Carter, D, (2023). Identifying molecular tags selectively retained on the surface of brain endothelial cells to generate artificial targets for therapy delivery Fluids And Barriers Of The Cns 20, 88

Current strategies to identify ligands for brain delivery select candidates based on preferential binding to cell-membrane components (CMC) on brain endothelial cells (EC). However, such strategies generate ligands with inherent brain specificity limitations, as the CMC (e.g., the transferrin receptor TfR1) are also significantly expressed on peripheral EC. Therefore, novel strategies are required to identify molecules allowing increased specificity of therapy brain delivery. Here, we demonstrate that, while individual CMC are shared between brain EC and peripheral EC, their endocytic internalization rate is markedly different. Such differential endocytic rate may be harnessed to identify molecular tags for brain targeting based on their selective retention on the surface of brain EC, thereby generating 'artificial' targets specifically on the brain vasculature. By quantifying the retention of labelled proteins on the cell membrane, we measured the general endocytic rate of primary brain EC to be less than half that of primary peripheral (liver and lung) EC. In addition, through bio-panning of phage-displayed peptide libraries, we unbiasedly probed the endocytic rate of individual CMC of liver, lung and brain endothelial cells. We identified phage-displayed peptides which bind to CMC common to all three endothelia phenotypes, but which are preferentially endocytosed into peripheral EC, resulting in selective retention on the surface of brain EC. Furthermore, we demonstrate that the synthesized free-form peptides are capable of generating artificial cell-surface targets for the intracellular delivery of model proteins into brain EC with increasing specificity over time. The developed identification paradigm, therefore, demonstrates that the lower endocytic rate of individual CMC on brain EC can be harnessed to identify peptides capable of generating 'artificial' targets for the selective delivery of proteins into the brain vasculature. In addition, our approach identifies brain-targeting peptides which would have been overlooked by conventional identification strategies, thereby increasing the repertoire of candidates to achieve specific therapy brain delivery.© 2023. The Author(s).

JTD Keywords: brain endothelium, endocytic rates, ligand identification, nanoparticles, phage-display, Barrier, Brain endothelium, Brain targeting, Endocytic rates, Ligand identification, Phage-display

Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up

M Leite, D., Matias, D., Battaglia, G., (2020). The role of BAR proteins and the glycocalyx in brain endothelium transcytosis Cells 9, (12), 2685

Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.

JTD Keywords: BAR proteins, Blood-brain barrier, Endothelium, Glycocalyx, Transcytosis, Tubulation

Campillo, N., Falcones, B., Montserrat, J. M., Gozal, D., Obeso, A., Gallego-Martin, T., Navajas, D., Almendros, I., Farré, R., (2017). Frequency and magnitude of intermittent hypoxia modulate endothelial wound healing in a cell culture model of sleep apnea Journal of Applied Physiology , 123, (5), 1047-1054

Intermittent hypoxia (IH) has been implicated in the cardiovascular consequences of obstructive sleep apnea (OSA). However, the lack of suitable experimental systems has precluded assessment as to whether IH is detrimental, protective, or both for the endothelium. The aim of the work was to determine the effects of frequency and amplitude of IH oxygenation swings on aortic endothelial wound healing. Monolayers of human primary endothelial cells were wounded and subjected to constant oxygenation (1%, 4%, 13%, or 20% O2) or IH at different frequencies (0.6, 6, or 60 cycles/h) and magnitude ranges (13–4% O2 or 20–1% O2), using a novel well-controlled system, with wound healing being measured after 24 h. Cell monolayer repair was similar at 20% O2 and 13% O2, but was considerably increased (approximately twofold) in constant hypoxia at 4% O2. The magnitude and frequency of IH considerably modulated wound healing. Cycles ranging 13–4% O2 at the lowest frequency (0.6 cycles/h) accelerated endothelial wound healing by 102%. However, for IH exposures consisting of 20% to 1% O2 oscillations, wound closure was reduced compared with oscillation in the 13–4% range (by 74% and 44% at 6 cycles/h and 0.6 cycles/h, respectively). High-frequency IH patterns simulating severe OSA (60 cycles/h) did not significantly modify endothelial wound closure, regardless of the oxygenation cycle amplitude. In conclusion, the frequency and magnitude of hypoxia cycling in IH markedly alter wound healing responses and emerge as key factors determining how cells will respond in OSA. NEW & NOTEWORTHY Intermittent hypoxia (IH) induces cardiovascular consequences in obstructive sleep apnea (OSA) patients. However, the vast array of frequencies and severities of IH previously employed in OSA-related experimental studies has led to controversial results on the effects of IH. By employing an optimized IH experimental system here, we provide evidence that the frequency and magnitude of IH markedly alter human aortic endothelial wound healing, emerging as key factors determining how cells respond in OSA.

JTD Keywords: Sleep apnea, Repair, Endothelium, Hypoxia, Reoxygenation