by Keyword: substitutes

Sole-Marti, X, Labay, C, Raymond, Y, Franch, J, Benitez, R, Ginebra, MP, Canal, C, (2023). Ceramic-hydrogel composite as carrier for cold-plasma reactive-species: Safety and osteogenic capacity in vivo Plasma Processes And Polymers 20, 2200155

Plasma-treated hydrogels have been put forward as a potential selective osteosarcoma therapy through the release of reactive species to the diseased site. To allow their translation to the clinics, it is crucial to show that the oxidative stress delivered by such hydrogels does not adversely affect healthy tissues. This is evaluated here by investigating the in vivo performance of a robocasted calcium phosphate cement infiltrated by a plasma-treated hydrogel. The plasma-treated composite implanted in a critical size bone defect of healthy rabbits revealed its safety, allowing equivalent bone ingrowth compared to the control scaffolds and to that of direct plasma treatment of the bone defect. This opens the door for using composite biomaterials containing plasma-generated reactive species in bone therapies.

JTD Keywords: Atmospheric plasma, Bone, Bone graft, Ceramic-hydrogel composite, Cold atmospheric plasma, Local therapy, Osteosarcoma, Plasma-treated polymer solutions, Substitutes, Survival

López-Canosa, Adrián, Pérez-Amodio, Soledad, Engel, Elisabeth, Castaño, Oscar, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Raymond Y, Pastorino D, Ginebreda I, Maazouz Y, Ortiz M, Manzanares M-C, Ginebra M-P, (2021). Computed tomography and histological evaluation of xenogenic and biomimetic bone grafts in three-wall alveolar defects in minipigs Clinical Oral Investigations 25, 6695-6706

Objectives This study aimed to compare the performance of a xenograft (XG) and a biomimetic synthetic graft (SG) in three-wall alveolar defects in minipigs by means of 3D computerised tomography and histology. Materials and methods Eight minipigs were used. A total of eight defects were created in the jaw of each animal, three of which were grafted with XGs, three with SGs, and two were left empty as a negative control. The allocation of the different grafts was randomised. Four animals were euthanised at 6 weeks and four at 12 weeks. The grafted volume was then measured by spiral computed tomography to assess volume preservation. Additionally, a histological analysis was performed in undecalcified samples by backscattered scanning electron microscopy and optical microscopy after Masson's trichrome staining. Results A linear mixed-effects model was applied considering four fixed factors (bone graft type, regeneration time, anatomic position, and maxilla/mandible) and one random factor (animal). The SG exhibited significantly larger grafted volume (19%) than the XG. The anterior sites preserved better the grafted volume than the posterior ones. Finally, regeneration time had a positive effect on the grafted volume. Histological observations revealed excellent osseointegration and osteoconductive properties for both biomaterials. Some concavities found in the spheroidal morphologies of SGs were associated with osteoclastic resorption. Conclusions Both biomaterials met the requirements for bone grafting, i.e. biocompatibility, osseointegration, and osteoconduction. Granule morphology was identified as an important factor to ensure a good volume preservation.

JTD Keywords: bone graft, bone regeneration, in vivo, miniature swine, synthetic graft, 3-dimensional changes, Anorganic bovine bone, Autogenous bone, Bio-oss, Biomaterials, Bone graft, Bone regeneration, Calcium-phosphate, Hydroxyapatite, In vivo, Miniature swine, Sinus floor augmentation, Substitute, Synthetic graft, Volume, Xenograft

Konka J, Buxadera-Palomero J, Espanol M, Ginebra M-P, (2021). 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments Acta Biomaterialia 134, 744-759

Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. Statement of significance: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading. © 2021 The Authors

JTD Keywords: 3d printing, bioceramics, biomimetic, bone, bone regeneration, concavity, concavity, bone regeneration, gelatin, hydrogel, hydroxyapatite, microspheres, osteoinduction, porosity, porous filament, substitutes, tissue-growth, 3d printing, Biomimetic, Calcium-phosphate scaffolds, Concavity, bone regeneration, Gelatin, Hydroxyapatite, Porous filament

Sanzana, E. S., Navarro, M., Ginebra, M. P., Planell, J. A., Ojeda, A. C., Montecinos, H. A., (2014). Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds Journal of Biomedical Materials Research - Part A , 102, (6), 1767-1773

The aim of this work is to shed light on the role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. A calcium phosphate glass in the system P2O5-CaO-Na2O-TiO2 was foamed using two different porogens, namely albumen and hydrogen peroxide (H2O2); the resulting three-dimensional porous structures were characterized and implanted in New Zealand rabbits to study their in vivo behavior. Scaffolds foamed with albumen displayed a monomodal pore size distribution centered around 150 μm and a porosity of 82%, whereas scaffolds foamed with H2O2 showed lower porosity (37%), with larger elongated pores, and multimodal size distribution. After 12 weeks of implantation, histology results revealed a good osteointegration for both types of scaffolds. The quantitative morphometric analysis showed the substitution of the biomaterial by new bone in the case of glasses foamed with albumen. In contrast, bone neoformation and material resorption were significantly lower in the defects filled with the scaffolds foamed with H2O2. The results obtained in this study showed that both calcium phosphate glass scaffolds were osteoconductive, biocompatible, and biodegradable materials. However, differences in porosity, pore architecture, and microstructure led to substantially different in vivo response.

JTD Keywords: Bone substitutes, Calcium phosphate glasses, in vivo, Scaffolds, Tissue engineering