Nanobioengineering


Josep Samitier Martí | Group Leader
Anna Lagunas Targarona | Senior Researcher
Mònica Mir Llorente | Senior Researcher
Joan Montero Boronat | Senior Researcher
Maria José López Martínez | Postdoctoral Researcher
Lourdes Josefina Rivas Torcates | Postdoctoral Researcher
Romén Rodríguez Trujillo | Postdoctoral Researcher
Maider Badiola Mateos | PhD Student
Ignasi Casanellas Mercado | PhD Student
Andrea García Lizarribar | PhD Student
Roberto Paoli | PhD Student
Miriam Funes Luque | Laboratory Technician
David Izquierdo Garcia | Laboratory Technician
Sandrine Miserere | Laboratory Technician
Jennifer Maria Cruzado Rangel | Research Technician
Samuel Dulay Bacena | Research Technician
Jessica Sierra Agudelo | Masters Student

About


The Nanobioengineering group is a multidisciplinary team working together in applying nanotechnology for the development of new biomedical systems and devices.

Nano-gap DNA sensors

The main output are diagnostic and point-of-care systems and integrated microfluidic Organ-on-Chip devices for the study of organ physiology, disease etiology, or drug screening.

The main research activities of the group include the engineering and biochemical functionalization of biomaterials integrated with microfluidics systems. The bioengineered microdevices are used to study cell responses to biomolecular compounds applied to Organ-on-Chip devices, or for the development of new lab-on-a-chip based biosensors.

Proximal segments of axons showing regeneration formation in compartmentalized microfluidic devices

The goal is to fabricate microsystems containing living cells that recapitulate tissue and organ level functions in vitro and new portable diagnosis devices that can be used as Point-of-Care systems.

The projects carried out by the group are focused on clinical and industrial problems and are related to three convergent research lines:

1. Biosensors and Lab-on-a-Chip devices for clinical diagnosis and food safety applications
– DNA sensors and platform arrays for cancer biomarker detection.
– Antibody-based sensors for pathogenic microorganisms’ detection and neurodegenerative early detection
– Sensor array for in vivo hypoxia and ischemia monitoring.
– Sensors to mimic the chemical detection of plant roots for robotic applications.
– Microfluidic chip for reagent handling in POC diagnosis devices.
– Microfluidic chip using hydrodynamic forces for cell counting and sorting.
– Application for detection of circulating tumors cells (CTC).

Fluorescence images of multi patterns fabricated with pyramidal PDMS stamp.

2. Nanotechnology applied to biomolecule interaction studies and micro/nano-environments for regenerative medicine applications
– Development of bioengineered 2D and 3D micro/nanoenvironments with a topography and chemical composition controlled at the nanoscale for cell behavior studies (adhesion, proliferation, differentiation).
– Biophysical description of cellular phenomena (cell migration, differentiation) using micro/nanotechnologies, cell biology tools and soft matter physics.
– Study of magnetite nanoparticles – Amyloid-Beta interaction in Alzheimer’s disease.

3. Microfluidic systems for biological studies and Organ-on-Chip devices
– Microfluidic chip for blood/plasma filtering.
– Spleen-on-a-chip development.
– Nanoporous-based systems for kidney-on–a-chip developments.
– Engineering microfluidic platforms for neurobiological studies.
– Development of 3D neuromuscular tissue models for soft robotics and clinical applications.

News/Jobs

A new model sheds light on cell migration
28/07/17

IBEC’s Nanobioengineering group have made important inroads in mechanobiology by creating an in vitro model of the extracellular matrix that shows how this environment works with protein complex actomyosin – the essential substance that allows muscle to contract – to direct the movement of cells.


A new therapeutic target that could slow the progression of Parkinson’s disease
28/02/17

Researchers at IBEC have identified a potential way to slow down the neurodegenerative progression of Parkinson’s disease.


New DNA-based technique for depositing materials with a resolution of less than 10 nanometers
20/01/17

A study led by CSIC and involving IBEC researchers proposes a new technique using molecules ‘a la carte’ to obtain nanoscale surfaces that will have many useful applications in microelectronics and biomedicine. The work has been published in the journal Advanced Materials.


Using 3D printing to produce crucial research tools
10/06/16

With 3D printing set to revolutionise research, IBEC researchers have been exploring the possibilities of using the new technology to already improve their processes and methods.


Shrinking technologies to dig deeper into the body’s secrets
22/12/15

A team of scientists including IBEC researchers have developed a brand new technique that miniaturizes the way we study biomolecular interactions, allowing multiple analyses inside living cells for the first time.


A major step towards repairing the spinal cord
02/03/15

Researchers at the Institute for Bioengineering of Catalonia and their collaborators reveal that they’re a step closer to optimizing cells able to guide regeneration of the spine.


Josep Samitier selected as Spanish expert in bio- and nanotechnology for OECD
29/05/14

IBEC Director Josep Samitier is one of the four delegates for Spain nominated to take part in the new Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT) of the OECD, which will start work in January 2015.


Faster and more accurate testing for causes of lower respiratory tract infections
07/04/14

Research and industry collaboration develops miniature diagnostic platform for respiratory infections such as pneumonia and infectious bronchitis Featured on the cover of the latest issue of Lab on a Chip


“Crean en España el primer bazo dentro de un chip capaz de actuar como este órgano humano”
19/03/14

The recent press release about the design of the first-ever functional 3D splenon capable of reproducing the function of the spleen, which is to filter red blood cells, by researchers from IBEC and CRESIB received lots of media coverage. Below are just a few examples.


“Càpsules de Ciència: Josep Samitier”
07/01/14

IBEC Director Josep Samitier stars in one of the Associació per a la Divulgació de la Cultura Cientifica (ADICC)’s ‘Càpsules de Ciència’, a series of videos highlighting biomedical and biotechnology researchers in Catalonia. In the video, he explains nanobiotechnology with the submarine on Ronda de Dalt as a backdrop, which represents the way nanodevices can travel through our bodies much like tiny submarines on a rescue mission.


Researchers and clinicians create first functional human ‘splenon-on-a-chip’
07/03/14

Scientists from IBEC and ISGlobal’s research centre CRESIB have designed the first-ever functional 3D splenon capable of reproducing the function of the spleen, which is to filter red blood cells.


“Nanorobots de disseny per atacar la malària”
18/11/2013

IBEC Director and Head of Nanobioengineering, Josep Samitier, and the head of the joint IBEC/CRESIB unit on Nanomalaria, Xavier Fernández-Busquets, both featured in an article in the Catalan daily newspaper Ara this weekend.


“El hombre biónico ya no es una utopía”
15/10/2013

IBEC appears in an article about bionics and rebuilding the human body published in Argentine daily newspaper El Tribuno (Salta), when Josep Samitier is quoted as an expert opinion on the subject.


IBEC researcher in first class of d·HEALTH Barcelona
25/09/2013

IBEC senior researcher Mateu Pla is one of the first class of just 12 fellows chosen for the first Design Health Barcelona (d·HEALTH Barcelona) higher education programme, which starts this week.


“El futur augura que tindrem la salut a l’abast de la mà”
31/07/2013

An interview with IBEC director Josep Samitier features in the summer edition of Alma, the magazine of the Obra Social “La Caixa”.


“Herramientas para diseñar laboratorios que caben en un chip”
16/04/2013

In this week’s Diario Medico Special on Diagnostic Therapies, IBEC acting director Josep Samitier’s expert opinion is quoted in an article about lab-on-a-chip technologies.


A promising strategy to target malaria
06/12/2012

A paper by the Nanobioengineering group reveals a new strategy for targeted malaria treatment that doesn’t rely on the use of expensive antibodies.


New generation robots – inspired by plants
12/06/2012

Last week saw the start of the three-year European project PLANTOID, of which IBEC’s Nanobioengineering group is a partner, which aims to design and develop robots inspired by plants.


A journey through the technological revolution
27/04/2012

IBEC associate director Josep Samitier officially opened the Tecnorrevolución exhibition at Barcelona’s CosmoCaixa museum last night.


“Sin un andamio de apoyo”
11/04/2011

IBEC associate director Josep Samitier is an expert opinion quoted in El Periodico last week regarding a story about a Japanese study that succeeded in growing an embryonic eye from the stem cells of mice. He describes this first successful attempt to obtain a complex three-dimensional structure spontaneously as an important breakthrough, as it opens new avenues into coaxing the growth of cells using a method that the researchers describe as an ‘inside job’ rather than using a support structure as is usually the case.


3rd BOND Consortium Meeting at IBEC
14/03/2011

The members of the BOND consortium met at IBEC at the beginning of last week for the 3rd technical meeting of the EU-funded international project.


Better tools for food safety
09/02/2011

On 2 February the kick-off meeting of a transnational project coordinated by postdoc Beatriz Prieto of the Nanobioengineering group took place at IBEC. The project, ‘Development of innovative tools for Ochratoxin A’, will evaluate and tackle the threat to humans and animals of exposure to mycotoxins (fungal metabolites) in food.


Spanish Minister for Education visits Nanobioengineering group
09/02/2011

On a tour of the Parc Científic de Barcelona (PCB) earlier this week, the Minister for Education, Ángel Gabilondo, paid a visit to IBEC’s Nanobioengineering lab and spoke at length to Associate Director Josep Samitier about his group’s research.


E-News Biocat: “Nanomedicine: Where Nanotechnology, biotechnology and the health sciences come together”
20/01/2011

IBEC associate director Josep Samitier is a contributor to the January edition of Biocat’s e-newsletter.


El Pais: “Cuestión de límites”
05/10/2010

“A Question of Limits” – an article written by associate director Josep Samitier to accompany a feature by El Pais journalist Mónica López Ferrado, “Los ‘nanoriesgos’ no son tan diminutos” (“‘Nanorisks’ are not so small’).


IBEC lends nanotech expertise to national exhibition
01/10/2010

If you’ve ever wanted to move an object using the power of your mind, predict the spread of a virus and the development of a pandemic, or watch a mini robot travel through the body to deliver a drug, you need look no further than the new Tecnorevolució exhibition, which has been created with IBEC’s associate director Josep Samitier as scientific adviser.


Famous for five minutes: TV3
23/09/2010

IBEC Project manager Juan Fran Sangüesa made the news on 22 September when he was interviewed for the midday bulletin on TV3, the Catalan television channel.


El Periódico de Catalunya: “Estamos desarrollando una nariz bioelectrónica que será capaz de diagnosticar enfermedades”
15/03/2010

In an interview, Josep Samitier, IBEC’s associated director and group leader of Nanobioengineering research group, explains the scientific basis and the development of a bioelectronic device to detect diseases.


La Vanguardia Sunday debate section: “El reto de la nanotecnología – Aportación minúscula, mejora grande”
14/03/2010

Josep Samitier, IBEC’s associated director and group leader of Nanobioengineering research group, analyzes the challenges and contributions of nanotechnology.


Novel Evolutionary Theory for the Explosion of Life
15/10/2009

The Cambrian Explosion is widely regarded as one of the most relevant episodes in the history of life on Earth, when the vast majority of animal phyla first appear in the fossil record. However, the causes of its origin have been object of debate for decades and the question of what was the trigger for the single cell microorganisms Precambrian Age (500 Mio. Years ago) to assemble and organize into multicellular organisms (Metazoans) has remained unanswered until now.


Project Kick-off for a New Bioelectronic Nose
07/10/2009

Advances in odour sensing technologies and artificial intelligence have given impetus to the use of smell in various fields, such as food safety, disease diagnosis, security, and the environment. Current electronic noses, based on electronic sensors, have considerable limitations in terms of sensitivity, reliability, and selectivity.


The Guardian Supplement: Nanotechnology 2009 – Part 2
27/08/2009

“Ask the Experts”: In an interview, Josep Samitier, Associate Director of IBEC, talks about the potential, the impact and the contributions of nanobiotechnology.


Josep Samitier appointed Rector of the University of Barcelona
21/04/2008

Josep Samitier, head of the IBEC nanobioengineering group, was appointed Acting Rector of the University of Barcelona (UB) on 21 April.


La recerca al Laboratori de Nanobioenginyeria de l’IBEC a El Periódico
15/01/2008

La recerca al Laboratori de Nanobioenginyeria de l’IBEC a El Periódico El passat dilluns 14 de gener, el diari El Periódico de Catalunya, dins la secció de Societat i Ciència, destacava la actualitat i la rellevància de la recerca en cèl·lules mare per a aplicacions terapèutiques, i concretament la recerca que es porta a terme a l’IBEC, dins el grup de recerca de Micro/nanosistemes per aplicacions biomèdiques dirigit pel Prof. Josep Samitier.


The textbook Molecular Cell Biology selects a figure from a nanobioengineering researcher at IBEC
12/07/2007

The prestigious reference textbook Molecular Cell Biology (Lodish et al.) has selected for its 6th edition (2008) a figure from the researcher at the nanobioengineering laboratory at the IBEC, Dr. Xavier Fernández-Busquets. Thanks to this important recognition of scientific excellence, the IBEC is the only Spanish institution appearing in the acknowledgements of the textbook, out of a total of 150 universitites and research centres.

Projects

EU-funded projects
PLANTOID Innovative Robotic Artefacts Inspired by Plant Roots for Soil Monitoring ICT Josep Samitier
National projects
BIOBOT Engineered biological soft robots based on neuro-muscular junction control (2015-2018) MINECO, Proyectos EXPLORA Ciencia / Tecnología 2015 Josep Samitier
Universal diagnostic platforms based on oligonucleotide cofidied nanoparticles and DNA microarray sensor devices MINECO, I+D-Investigación fundamental no orientada Josep Samitier
MINDS Plataforma MIcrofluídica 3D de cultivo Neuronal compartimentada para el estuDio de enfermedades neurológicaS (2016-2018) MINECO, Proyectos I+D Excelencia Josep Samitier
nanoET-leukemia Nanoconductance of electron transfer proteins of the respiratory chain. Direct measurementat the single molecular level and therapeutic regulation in cancer stem cells (2015-2018) MINECO, Proyectos RETOS 2015 / CIBER Josep Samitier
ISCHEMSURG Miniaturized electrochemical sensor for monitoring of free flap ischemia in post-surgery
(2017-2018)
CaixaImpulse Monica Mir
Privately funded projects
Desenvolupar un sistema d’assistència robòtica per medicina i cirurgia fetal (2016-2019) CELLEX Josep Samitier
Joint Programme_Healthy Ageing (2016) Obra Social “La Caixa” Josep Samitier
Monitoring neurocognitive deficits in Alzheimer’s and Parkinson’s diseases using saliva or blood-derived biomarkers and a multiplexed approach (2016-2018) Obra Social “La Caixa” Josep Samitier
ELECTRA-G (2014-2016) Conveni GENOMICA S.A.U. Josep Samitier
Desarrollo de una nueva tecnología lab-on-a-chip para la detección y cuantificación de secuencias de ADN/
ARN (2014-2016)
Conveni GENOMICA S.A.U. Josep Samitier

Publications

Garreta, Elena, Oria, Roger, Tarantino, Carolina, Pla-Roca, Mateu, Prado, Patricia, Fernández-Avilés, Francisco, Campistol, Josep Maria, Samitier, Josep, Montserrat, Nuria, (2017). Tissue engineering by decellularization and 3D bioprinting Materials Today 20, (4), 166-178

Discarded human donor organs have been shown to provide decellularized extracellular matrix (dECM) scaffolds suitable for organ engineering. The quest for appropriate cell sources to satisfy the need of multiple cells types in order to fully repopulate human organ-derived dECM scaffolds has opened new venues for the use of human pluripotent stem cells (hPSCs) for recellularization. In addition, three-dimensional (3D) bioprinting techniques are advancing towards the fabrication of biomimetic cell-laden biomaterial constructs. Here, we review recent progress in decellularization/recellularization and 3D bioprinting technologies, aiming to fabricate autologous tissue grafts and organs with an impact in regenerative medicine.


Gállego, Isaac, Manning, Brendan, Prades, Joan Daniel, Mir, Mònica, Samitier, Josep, Eritja, Ramon, (2017). DNA-origami-driven lithography for patterning on gold surfaces with sub-10 nm resolution Advanced Materials 29, 1603233

Agusil, Juan Pablo, Torras, Núria, Duch, Marta, Esteve, Jaume, Pérez-García, Lluïsa, Samitier, Josep, Plaza, José A., (2017). Highly anisotropic suspended planar-array chips with multidimensional sub-micrometric biomolecular patterns Advanced Functional Materials 27, 1605912

Suspended planar-array (SPA) chips embody millions of individual miniaturized arrays to work in extremely small volumes. Here, the basis of a robust methodology for the fabrication of SPA silicon chips with on-demand physical and chemical anisotropies is demonstrated. Specifically, physical traits are defined during the fabrication process with special focus on the aspect ratio, branching, faceting, and size gradient of the final chips. Additionally, the chemical attributes augment the functionality of the chips with the inclusion of complete coverage or patterns of selected biomolecules on the surface of the chips with contact printing techniques, offering an extremely high versatility, not only with the choice of the pattern shape and distribution but also in the choice of biomolecular inks to pattern. This approach increases the miniaturization of printed arrays in 3D structures by two orders of magnitude compared to those previously demonstrated. Finally, functional micrometric and sub-micrometric patterned features are demonstrated with an antibody binding assay with the recognition of the printed spots with labeled antibodies from solution. The selective addition of physical and chemical attributes on the suspended chips represents the basis for future biomedical assays performed within extremely small volumes.

Keywords: Microcontact printing, Microparticles, Molecular multiplexing, Polymer pen lithography, Silicon chip technology


Caballero, D., Palacios, L., Freitas, P. P., Samitier, J., (2017). An interplay between matrix anisotropy and actomyosin contractility regulates 3D-directed cell migration Advanced Functional Materials Early View (Online Version of Record published before inclusion in an issue)

Directed cell migration is essential for many biological processes, such as embryonic development or cancer progression. Cell contractility and adhesion to the extracellular matrix are known to regulate cell locomotion machinery. However, the cross-talk between extrinsic and intrinsic factors at the molecular level on the biophysical mechanism of three dimensional (3D)-directed cell migration is still unclear. In this work, a novel physiologically relevant in vitro model of the extracellular microenvironment is used to reveal how the topological anisotropy of the extracellular matrix synergizes with actomyosin contractility to modulate directional cell migration morphodynamics. This study shows that cells seeded on polarized 3D matrices display asymmetric protrusion morphodynamics and in-vivo-like phenotypes. It is found that matrix anisotropy significantly enhances cell directionality, but strikingly, not the invasion distance of cells. In Rho-inhibited cells, matrix anisotropy counteracts the lack of actomyosin-driven forces to stabilize cell directionality suggesting a myosin-II-independent mechanism for cell guidance. Finally, this study shows that on isotropic 3D environments, cell directionality is independent of actomyosin contractility. Altogether, this study provides novel quantitative data on the biomechanical regulation of directional cell motion and shows the important regulatory role of matrix anisotropy and actomyosin forces to guide cell migration in 3D microenvironments.

Keywords: Anisotropy, Directed cell migration, Extracellular matrices, Migration modes, Three dimensional microenvironments


Caballero, D., Samitier, J., (2017). Topological control of extracellular matrix growth: A native-like model for cell morphodynamics studies ACS Applied Materials and Interfaces 9, (4), 4159-4170

The interaction of cells with their natural environment influences a large variety of cellular phenomena, including cell adhesion, proliferation, and migration. The complex extracellular matrix network has challenged the attempts to replicate in vitro the heterogeneity of the cell environment and has threatened, in general, the relevance of in vitro studies. In this work, we describe a new and extremely versatile approach to generate native-like extracellular matrices with controlled morphologies for the in vitro study of cellular processes. This general approach combines the confluent culture of fibroblasts with microfabricated guiding templates to direct the three-dimensional growth of well-defined extracellular networks which recapitulate the structural and biomolecular complexity of features typically found in vivo. To evaluate its performance, we studied fundamental cellular processes, including cell cytoskeleton organization, cell-matrix adhesion, proliferation, and protrusions morphodynamics. In all cases, we found striking differences depending on matrix architecture and, in particular, when compared to standard two-dimensional environments. We also assessed whether the engineered matrix networks influenced cell migration dynamics and locomotion strategy, finding enhanced migration efficiency for cells seeded on aligned matrices. Altogether, our methodology paves the way to the development of high-performance models of the extracellular matrix for potential applications in tissue engineering, diagnosis, or stem-cell biology.

Keywords: Biomimetics, Cell migration, Engineered cell-derived matrices, Extracellular matrix, In vitro model


Lagunas, Anna, Tsintzou, Iro, Vida, Yolanda, Collado, Daniel, Pérez-Inestrosa, Ezequiel, Pereira, Cristina Rodríguez, Magalhaes, Joana, Andrades, José A., Samitier, Josep, (2017). Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment Nano Research 10, (6), 1959-1971

Arginine-glycine-aspartic acid (RGD) dendrimer-based nanopatterns on poly(L-lactic acid) were used as bioactive substrates to evaluate the impact of the RGD local surface density on the chondrogenic induction of adult human mesenchymal stem cells. During chondrogenic commitment, active extracellular matrix (ECM) remodeling takes place, playing an instructive role in the differentiation process. Although three-dimensional environments such as pellet or micromass cultures are commonly used for in vitro chondrogenic differentiation, these cultures are rather limited with respect to their ability to interrogate cells in cell–ECM interactions. In the present study, the nanopatterns of the tunable RGD surface density were obtained as a function of the initial dendrimer concentration. The local RGD surface density was quantified through probability contour plots for the minimum interparticle distance, constructed from the corresponding atomic force microscopy images, and correlated with the cell adhesion and differentiation response. The results revealed that the local RGD surface density at the nanoscale acts as a regulator of chondrogenic commitment, and that intermediate adhesiveness of cells to the substrates favors mesenchymal cell condensation and early chondrogenic differentiation.


Urrea, L., Segura-Feliu, M., Masuda-Suzukake, M., Hervera, A., Pedraz, L., Aznar, J. M. G., Vila, M., Samitier, J., Torrents, E., Ferrer, I., Gavín, R., Hagesawa, M., Del Río, J. A., (2017). Involvement of cellular prion protein in Molecular Neurobiology online, 1-14

The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of

Keywords: Amyloid spreading, Microfluidic devices, Prnp, Synuclein


Ramos, E., Pardo, W. A., Mir, M., Samitier, J., (2017). Dependence of carbon nanotubes dispersion kinetics on surfactants Nanotechnology 28, (13), 135702

Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

Keywords: Dispersion, DNA, Single-walled carbon nanotubes (SWCNTs), Small angle x-ray scattering (SAXS), Sodium dodecyl sulfate (SDS), Surfactant, Triton X-100


Zaffino, R. L., Mir, M., Samitier, J., (2017). Oligonucleotide probes functionalization of nanogap electrodes Electrophoresis Early View (Online Version of Record published before inclusion in an issue)

Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications.

Keywords: Biosensor bioelectronics, DNA electrophoresis, Nanogap electrodes, Self-assembled monolayers, Site-selective deposition


Páez-Avilés, C., van Rijnsoever, F. J., Juanola-Feliu, E., Samitier, J., (2017). Multi-disciplinarity breeds diversity: the influence of innovation project characteristics on diversity creation in nanotechnology Journal of Technology Transfer online, 1-24

Nanotechnology is an emerging and promising field of research. Creating sufficient technological diversity among its alternatives is important for the long-term success of nanotechnologies, as well as for other emerging technologies. Diversity prevents early lock-in, facilitates recombinant innovation, increases resilience, and allows market growth. Creation of new technological alternatives usually takes place in innovation projects in which public and private partners often collaborate. Currently, there is little empirical evidence about which characteristics of innovation projects influence diversity. In this paper we study the influence of characteristics of EU-funded nanotechnology projects on the creation of technological diversity. In addition to actor diversity and the network of the project, we also include novel variables that have a plausible influence on diversity creation: the degree of multi-disciplinarity of the project and the size of the joint knowledge base of project partners. We apply topic modelling (Latent Dirichlet allocation) as a novel method to categorize technological alternatives. Using an ordinal logistic regression model, our results show that the largest contribution to diversity comes from the multi-disciplinary nature of a project. The joint knowledge base of project partners and the geographical distance between them were positively associated with technological diversity creation. In contrast, the number and diversity of actors and the degree of clustering showed a negative association with technological diversity creation. These results extend current micro-level explanations of how the diversity of an emerging technology is created. The contribution of this study could also be helpful for policy makers to influence the level of diversity in a technological field, and hence to contribute to survival of emerging technologies.

Keywords: Innovation projects, Multi-disciplinarity, Nanotechnology, Social networks, Technological diversity, Topic models


Caballero, David, Blackburn, Sophie M., de Pablo, Mar, Samitier, Josep, Albertazzi, Lorenzo, (2017). Tumour-vessel-on-a-chip models for drug delivery Lab on a Chip Advance Article

Nanocarriers for drug delivery have great potential to revolutionize cancer treatment, due to their enhanced selectivity and efficacy. Despite this great promise, researchers have had limited success in the clinical translation of this approach. One of the main causes of these difficulties is that standard in vitro models, typically used to understand nanocarriers' behaviour and screen their efficiency, do not provide the complexity typically encountered in living systems. In contrast, in vivo models, despite being highly physiological, display serious bottlenecks which threaten the relevancy of the obtained data. Microfluidics and nanofabrication can dramatically contribute to solving this issue, providing 3D high-throughput models with improved resemblance to in vivo systems. In particular, microfluidic models of tumour blood vessels can be used to better elucidate how new nanocarriers behave in the microcirculation of healthy and cancerous tissues. Several key steps of the drug delivery process such as extravasation, immune response and endothelial targeting happen under flow in capillaries and can be accurately modelled using microfluidics. In this review, we will present how tumour-vessel-on-a-chip systems can be used to investigate targeted drug delivery and which key factors need to be considered for the rational design of these materials. Future applications of this approach and its role in driving forward the next generation of targeted drug delivery methods will be discussed.


Torras, Núria, Agusil, Juan Pablo, Vázquez, Patricia, Duch, Marta, Hernández-Pinto, Alberto M., Samitier, Josep, de la Rosa, Enrique J., Esteve, Jaume, Suárez, Teresa, Pérez-García, Lluïsa, Plaza, José A., (2016). Suspended planar-array chips for molecular multiplexing at the microscale Advanced Materials 28, (7), 1449–1454

A novel suspended planar-array chips technology is described, which effectively allows molecular multiplexing using a single suspended chip to analyze extraordinarily small volumes. The suspended chips are fabricated by combining silicon-based technology and polymer-pen lithography, obtaining increased molecular pattern flexibility, and improving miniaturization and parallel production. The chip miniaturization is so dramatic that it permits the intracellular analysis of living cells.

Keywords: Chip-in-a-cell, Suspended-arrays, Planar-arrays, Silicon chips, Single-cell analysis


Parra-Cabrera, C., Samitier, J., Homs-Corbera, A., (2016). Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection Biosensors and Bioelectronics 77, 1192-1200

We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10. ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

Keywords: Adjustable sensing, Impedance measurements, In situ functionalization, Microfluidics, Prostate specific antigen, Self-assembled monolayers


Urrios, A., Parra-Cabrera, C., Bhattacharjee, N., Gonzalez-Suarez, A. M., Rigat-Brugarolas, L. G., Nallapatti, U., Samitier, J., Deforest, C. A., Posas, F., Garcia-Cordero, J. L., Folch, A., (2016). 3D-printing of transparent bio-microfluidic devices in PEG-DA Lab on a Chip 16, (12), 2287-2294

The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices.


Caballero, D., Katuri, J., Samitier, J., Sánchez, S., (2016). Motion in microfluidic ratchets Lab on a Chip 16, (23), 4477-4481

The ubiquitous random motion of mesoscopic active particles, such as cells, can be “rectified” or directed by embedding the particles in systems containing local and periodic asymmetric cues. Incorporated on lab-on-a-chip devices, these microratchet-like structures can be used to self-propel fluids, transport particles, and direct cell motion in the absence of external power sources. In this Focus article we discuss recent advances in the use of ratchet-like geometries in microfluidics which could open new avenues in biomedicine for applications in diagnosis, cancer biology, and bioengineering.


Lagunas, A., Sasso, B., Tesson, N., Cantos, C., Martinez, E., Samitier, J., (2016). Synthesis of a polymethyl(methacrylate)-polystyrene-based diblock copolymer containing biotin for selective protein nanopatterning Polymer Chemistry 7, 212-218

Protein patterning is of interest in high-throughput screening. Due to an increase in demand for further miniaturization of protein assays, block copolymers (BCPs) that can undergo large-area phase separation into nanometer-size domains have attracted great attention as substrates for protein nanopatterning. Here we report the synthesis of a polymethyl(methacrylate)-polystyrene-based diblock copolymer which, once spin-coated, is capable of self-segregating into cylindrical polystyrene (PS) domains. In this copolymer, the PS block was modified to introduce biotin below 10% molar in order to achieve molecular recognition of streptavidin. The PMMA matrix used to introduce poly(ethylene glycol) enabled us to obtain an antifouling environment that prevents unspecific protein adsorption outside the domains. The use of the biotin-streptavidin pair in this BCP makes it suitable for nanopatterning of other biotinylated proteins of interest for the purposes of cell biology, biosensors, and tissue engineering.


Credi, C., De Marco, C., Molena, E., Pla Roca, M., Samitier, J., Marques, J., Fernàndez-Busquets, X., Levi, M., Turri, S., (2016). Heparin micropatterning onto fouling-release perfluoropolyether-based polymers via photobiotin activation Colloids and Surfaces B: Biointerfaces 146, 250-259

A simple method for constructing versatile ordered biotin/avidin arrays on UV-curable perfluoropolyethers (PFPEs) is presented. The goal is the realization of a versatile platform where any biotinylated biological ligands can be further linked to the underlying biotin/avidin array. To this end, microcontact arrayer and microcontact printing technologies were developed for photobiotin direct printing on PFPEs. As attested by fluorescence images, we demonstrate that this photoactive form of biotin is capable of grafting onto PFPEs surfaces during irradiation. Bioaffinity conjugation of the biotin/avidin system was subsequently exploited for further self-assembly avidin family proteins onto photobiotin arrays. The excellent fouling release PFPEs surface properties enable performing avidin assembly step simply by arrays incubation without PFPEs surface passivation or chemical modification to avoid unspecific biomolecule adsorption. Finally, as a proof of principle biotinylated heparin was successfully grafted onto photobiotin/avidin arrays.

Keywords: Antifouling, Heparin, Malaria, Microcontact arrayer, Microcontact printing, Micropatterning, Perfluoropolyether, Photobiotin, Polymers, Soft lithography


Sanmartí-Espinal, M., Galve, R., Iavicoli, P., Persuy, M. A., Pajot-Augy, E., Marco, M. P., Samitier, J., (2016). Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles Colloids and Surfaces B: Biointerfaces 139, 269-276

Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes.

Keywords: Bioelectronic nose, Competitive ELISA, G-protein-coupled receptors quantification, Natural vesicles, Olfactory receptors, Transmembrane proteins


Tahirbegi, I.B., Pardo, W.A., Alvira, M., Mir, M., Samitier, J., (2016). Amyloid A Nanotechnology 27, (46), 465102

The accumulation of iron oxides - mainly magnetite - with amyloid peptide is a key process in the development of Alzheimer's disease (AD). However, the mechanism for biogeneration of magnetite inside the brain of someone with AD is still unclear. The iron-storing protein ferritin has been identified as the main magnetite-storing molecule. However, accumulations of magnetite in AD are not correlated with an increase in ferritin, leaving this question unresolved. Here we demonstrate the key role of amyloid peptide Aβ 42, one of the main hallmarks of AD, in the generation of magnetite nanoparticles in the absence of ferritin. The capacity of amyloid peptide to bind and concentrate iron hydroxides, the basis for the formation of magnetite, benefits the spontaneous synthesis of these nanoparticles, even under unfavorable conditions for their formation. Using scanning and transmission electron microscopy, electron energy loss spectroscopy and magnetic force microscopy we characterized the capacity of amyloid peptide Aβ 42 to promote magnetite formation.

Keywords: Alzheimer disease (AD), amyloid peptide Ab42, magnetite nanoparticle, metallobiomolecule, iron oxide, neurodegenerative brain diseases


Silva, N., Muñoz, C., Diaz-Marcos, J., Samitier, J., Yutronic, N., Kogan, M. J., Jara, P., (2016). In situ visualization of the local photothermal effect produced on Nanoscale Research Letters 11, 180

Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).

Keywords: Cyclodextrin inclusion compound, Gold nanoparticles, Guest migration, Plasmonic heating


Páez-Avilés, C., Juanola-Feliu, E., Punter-Villagrasa, J., Del Moral Zamora, B., Homs-Corbera, A., Colomer-Farrarons, J., Miribel-Català , P. L., Samitier, J., (2016). Combined dielectrophoresis and impedance systems for bacteria analysis in microfluidic on-chip platforms Sensors 16, (9), 1514

Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.

Keywords: Bacteria, Dielectrophoresis, Impedance, Microfluidics, On-chip


Botaya, L., Coromina, X., Samitier, J., Puig-Vidal, M., Otero, J., (2016). Visualized multiprobe electrical impedance measurements with STM tips using shear force feedback control Sensors 16, (6), 757

Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current-voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

Keywords: Impedance measurement, Multiprobe SPM, Quartz tuning forks, Scanning probe microscopy, Scanning tunneling microscope (STM) tip


Pla-Roca, M., Altay, G., Giralt, X., Casals, A., Samitier, J., (2016). Design and development of a microarray processing station (MPS) for automated miniaturized immunoassays Biomedical Microdevices 18, (4)

Here we describe the design and evaluation of a fluidic device for the automatic processing of microarrays, called microarray processing station or MPS. The microarray processing station once installed on a commercial microarrayer allows automating the washing, and drying steps, which are often performed manually. The substrate where the assay occurs remains on place during the microarray printing, incubation and processing steps, therefore the addressing of nL volumes of the distinct immunoassay reagents such as capture and detection antibodies and samples can be performed on the same coordinate of the substrate with a perfect alignment without requiring any additional mechanical or optical re-alignment methods. This allows the performance of independent immunoassays in a single microarray spot.

Keywords: Automation, Customization, High-throughput screening, Immunoassays, Microarrays


Paoli, R., Samitier, J., (2016). Mimicking the kidney: A key role in organ-on-chip development Micromachines 7, (7), 126

Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called "organ-on-chip" (OOC) technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation-more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.

Keywords: Disease model, Drug discovery, Kidney, Nephron-on-chip, Organ-on-chip


Lagunas, A., Caballero, D., Samitier, J., (2016). Influence of controlled micro- and nanoengineered environments on stem cell Advanced Surfaces for Stem Cell Research (ed. Tiwari, A., Garipcan, B., Uzun, L.), Wiley (San Francisco, USA) , 85-140

The book outlines first the importance of Extra Cellular Matrix (ECM), which is a natural surface for most of cells. In the following chapters the influence of biological, chemical, mechanical, and physical properties of surfaces in micro and nano-scale on stem cell behavior are discussed including the mechanotransduction. Biomimetic and bioinspired approaches are highlighted for developing microenvironment of several tissues, and surface engineering applications are discussed in tissue engineering, regenerative medicine and different type of biomaterials in various chapters of the book. This book brings together innovative methodologies and strategies adopted in the research and development of Advanced Surfaces in Stem Cell Research. Well-known worldwide researchers deliberate subjects including: Extracellular matrix proteins for stem cell fate The superficial mechanical and physical properties of matrix microenvironment as stem cell fate regulator Effects of mechanotransduction on stem cell behavior Modulation of stem cells behavior through bioactive surfaces Influence of controlled micro and nanoengineered surfaces on stem cell fate Nanostructured polymeric surfaces for stem cells Laser surface modification techniques and stem cells applications Plasma polymer deposition: a versatile tool for stem cell research Application of bioreactor concept and modeling techniques in bone regeneration and augmentation treatments Substrates and surfaces for control of pluripotent stem cell fate and function


Paéz Aviles, C. , Juanola-Feliu, E., Tahirbegi, I.B. , Mir, M., Gonzalez-Piñero, M., Samitier, J., (2015). Innovation and technology transfer of medical devices fosterd by cross disciplinary communities of practitioners International Journal of Innovation Management 19, (6), 1540012

Commercialisation of emerging technological innovations such as medical devices can be a time-consuming and lengthy process resulting in a market entrance failure. To tackle this general problem, major challenges are being analysed, principally focusing on the role of Communities of Practitioners (CoPs) in the process of effective transfer of high-value emerging technologies from academia to market. Taking a case study approach, this document describes the role of a cross-disciplinary CoP in the technology transfer process within a convergence scenario. The case presented is a sensor array for ischemia detection developed by different practitioners from diverse organisations: university, research institution, hospital, and a scientific park. The analysis also involves the innovation ecosystem where all stakeholders are taken into account. This study contributes to a better understanding of the managerial implications of CoP fostering technology transfer and innovation, principally focused on the current need for new biomedical technologies and tools.

Keywords: CoP, Medical devices, Innovation, Technology transfer, Ischemia


Lagunas, Anna, Martinez, Elena, Samitier, Josep, (2015). Surface-bound molecular gradients for the high throughput screening of cell responses Frontiers in Bioengineering and Biotechnology 3, Article 132

Chemical gradient surfaces are described as surfaces with a gradually varying composition along their length. Continuous chemical gradients have recently been proposed as alternative to discrete microarrays for the high throughput screening of the effects of ligand concentration in cells. Here we review some of the most recent examples in which gradients have been used to evaluate the effect of a varying ligand concentration in cell adhesion, morphology, growth and differentiation of cells, including some of our recent findings. They show the importance of the organization of ligands at the nanoscale, which is highlighted by abrupt changes in cell behavior at critical concentration thresholds.

Keywords: Cell Adhesion, Cell Differentiation, Cell growth, Cell morphology, Molecular gradient


Galán, T., Prieto-Simón, B., Alvira, M., Eritja, R., Götz, G., Bäuerle, P., Samitier, J., (2015). Label-free electrochemical DNA sensor using "click"-functionalized PEDOT electrodes Biosensors and Bioelectronics 74, 751-756

Here we describe a label-free electrochemical DNA sensor based on poly(3,4-ethylenedioxythiophene)-modified (PEDOT-modified) electrodes. An acetylene-terminated DNA probe, complementary to a specific "Hepatitis C" virus sequence, was immobilized onto azido-derivatized conducting PEDOT electrodes using "click" chemistry. DNA hybridization was then detected by differential pulse voltammetry, evaluating the changes in the electrochemical properties of the polymer produced by the recognition event. A limit of detection of 0.13. nM was achieved using this highly selective PEDOT-based genosensor, without the need for labeling techniques or microelectrode fabrication processes. These results are promising for the development of label-free and reagentless DNA hybridization sensors based on conducting polymeric substrates. Biosensors can be easily prepared using any DNA sequence containing an alkyne moiety. The data presented here reveal the potential of this DNA sensor for diagnostic applications in the screening of diseases, such as "Hepatitis C", and genetic mutations.

Keywords: Azido-EDOT, Click chemistry, Differential pulse voltammetry, DNA biosensor, Electrochemistry, Hepatitis C virus


Reginensi, Diego, Carulla, Patricia, Nocentini, Sara, Seira, Oscar, Serra-Picamal, Xavier, Torres-Espín, Abel, Matamoros-Angles, Andreu, Gavín, Rosalina, Moreno-Flores, María Teresa, Wandosell, Francisco, Samitier, Josep, Trepat, Xavier, Navarro, Xavier, del Río, José Antonio, (2015). Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord Cellular and Molecular Life Sciences 72, (14), 2719-2737

Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.

Keywords: Olfactory ensheathing cells, Traction force microscopy, Chondroitin sulphate proteoglycans, Cell migration, Nogo receptor ectodomain


Stanton, M. M., Samitier, J., Sánchez, S., (2015). Bioprinting of 3D hydrogels Lab on a Chip 15, (15), 3111-3115

Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.


Teller, Sara, Tahirbegi, Islam Bogachan, Mir, M., Samitier, Josep, Soriano, Jordi, (2015). Magnetite-Amyloid- Scientific Reports 5, 17261

The understanding of the key mechanisms behind human brain deterioration in Alzheimer’ disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-


Zaffino, R. L., Galan, T., Pardo, W. A., Mir, M., Samitier, J., (2015). Nanoprobes for enhanced electrochemical DNA sensors Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7, (6), 817-827

Biosensors, small devices enabling selective bioanalysis because of properly assembled biological recognition molecules, represent the fortuitous results of years of interdisciplinary and complementary investigations in different fields of science. The ultimate role of a biosensor is to provide coupling between the recognition element and the analyte of interest, bringing a quantitative value of its concentrations into a complex sample matrix. They offer many advantages. Among them, portability, low cost with fast response times, and the possibility to operate in situ without the need for sample preparation are certainly the most important. Among biosensors, a large space is occupied by DNA biosensors. Screening genomic DNA is of fundamental importance for the development of new tools available to physicians during the clinical process. Sequencing of individual human genomes, accomplished principally by microarrays with optical detection, is complex and expensive for current clinical protocols. Efforts in research are focused on simplifying and reducing the cost of DNA biosensors. For this purpose, other transduction techniques are under study to make more portable and affordable DNA biosensors. Compared with traditional optical detection tools, electrochemical methods allow the same sensitivity and specificity but are less expensive and less labor intensive. Scalability of electrochemical devices makes it possible to use the advantages introduced by nanosized components. The involvement of nanomaterials and nanostructures with custom-tailored shapes and properties is expected to rapidly boost the field of electrochemical DNA biosensors and, in general, that of next-generation sequencing technologies.


Barreiros dos Santos, M., Azevedo, S., Agusil, J. P., Prieto-Simón, B., Sporer, C., Torrents, E., Juárez, A., Teixeira, V., Samitier, J., (2015). Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria Bioelectrochemistry 101, 146-152

Abstract Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyclic voltammetry. The immobilization of antibody on the epoxysilane layer was quantified by Optical Waveguide Lightmode Spectroscopy, obtaining a mass variation of 12 ng cm− 2 (0.08 pmol cm− 2). Microcontact printing and fluorescence microscopy were used to demonstrate the specific binding of E. coli O157:H7 to the antibody-patterned surface. We achieved a ratio of 1:500 Salmonella typhimurium/E. coli O157:H7, thus confirming the selectivity of the antibodies and efficiency of the functionalization procedure. Finally, the detection capacity of the ITO-based immunosensor was evaluated by Electrochemical Impedance Spectroscopy. A very low limit of detection was obtained (1 CFU mL− 1) over a large linear working range (10–106 CFU mL− 1). The specificity of the impedimetric immunosensor was also examined. Less than 20% of non-specific bacteria (S. typhimurium and E. coli K12) was observed. Our results reveal the applicability of ITO for the development of highly sensitive and selective impedimetric immunosensors.

Keywords: E. coli O157:H7, Electrochemical Impedance Spectroscopy, Immunosensor, Indium tin oxide, Label-free detection


Caballero, David, Goetz, Jacky G., (2015). Foreword: Physics of cell migration Cell Adhesion & Migration 9, (5), 325-326

Galan, Teresa, Lagunas, Anna, Martinez, Elena, Samitier, Josep, (2015). Fabrication of bioactive polypyrrole microelectrodes on insulating surfaces by surface-guided biocatalytical polymerization RSC Advances 5, (82), 67082-67088

Although promising, organic microelectronics lacks standard fabrication methods comparable to photolithography in terms of resolution. Here we propose a novel and easily scalable on-surface biocatalytical procedure for the fabrication of polypyrrole microelectrodes on insulating surfaces. Arrays of polypyrrole microelectrodes were obtained by surface-guided biocatalytical polymerization, achieving up to 5 [small micro]m in resolution and conductivities up to 3 S cm-1. The mild reaction conditions provided by the biocatalytical approach permit the entrapment of bioactive compounds during polymer synthesis. This system is convenient for drug release purposes, as demonstrated by the controlled release of entrapped biotin through electrical stimulation. These results pave the way for the application of polypyrrole microelectrodes produced through biocatalysis in the development of implantable devices for remotely controlled tissue interactions.


Rigat, L., Homs-Corbera, A., Samitier, J., (2015). Highly hydrophilic microfluidic device prototyping using a novel poly(dimethylsiloxane)-based polymeric mix RSC Advances 5, (10), 7423-7425

We present a novel methodology to create in a simple, fast and cheap way an interpenetrating polymer network biomaterial, mixing 2-hydroxyethil methacrylate and poly(dimethylsiloxane), for long-lasting highly hydrophilic microfluidic device prototyping. The presented polymer could be potentially useful to develop point-of-care microfluidic diagnostic devices allowing blood displacement without exertion in microchannels while proving to have low biological analytes adhesion.


Tong, Z., Segura-Feliu, M., Seira, O., Homs-Corbera, A., Del Río, J. A., Samitier, J., (2015). A microfluidic neuronal platform for neuron axotomy and controlled regenerative studies RSC Advances 5, (90), 73457-73466

Understanding the basic mechanisms of neural regeneration after injury is a pre-requisite for developing appropriate treatments. Traditional approaches to model axonal lesions, such as high intensity power laser ablation or sharp metal scratching, are complex to implement, have low throughputs, and generate cuts that are difficult to modulate. We present here a novel reproducible microfluidic approach to model in vitro mechanical lesion of tens to hundreds of axons simultaneously in a controlled manner. The dimensions of the induced axonal injury and its distance from the neuronal cell body are precisely controlled while preserving both the proximal and distal portions of axons. We have observed that distal axons undergo Wallerian-like anterograde degeneration after axotomy; in contrast, proximal portions of the axons remain un-degenerated, possessing the potential to re-grow. More importantly, surpassing the previous axotomy methods performed in Petridishes in which local microenvironments cannot be tailored, our platform holds the capability to implement fine-tuned treatments to lesioned axon stumps in a local, controlled manner. Specifically, molecules such as chondroitin sulphate proteoglycans and its degrading enzyme chondroitinase ABC, hydrogels, and supporting cells have been shown to be deliverable to the lesioned site of injured axons. In addition, this system also permits double interventions at the level of the lesioned axons and the perikaryon. This proves the potential of our model by demonstrating how axonal regrowth can be evaluated under circumstances that are better mimics of biological problems. We believe that this novel mechanical microfluidic axotomy approach is easy to perform, yields high throughput axon lesions, is physiologically relevant, and offers a simplified platform for screening of potential new neurological drugs.


Estévez, M., Martínez, E., Yarwood, S. J., Dalby, M. J., Samitier, J., (2015). Adhesion and migration of cells responding to microtopography Journal of Biomedical Materials Research - Part A 103, (5), 1659-1668

It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 μm2 posts and compare their response to that of FAK-/- fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon.

Keywords: Adhesion, Cell migration, Cell morphology, Focal adhesion kinase, Microstructures


del Moral-Zamora, Beatriz, Punter-Villagrassa, Jaime, Oliva-Brañas, Ana M., Álvarez-Azpeitia, Juan Manuel, Colomer-Farrarons, Jordi, Samitier, Josep, Homs-Corbera, Antoni, Miribel-Català, Pere Ll, (2015). Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: application to Escherichia coli Electrophoresis 36, (9-10), 1130-1141

The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.

Keywords: Autonomous Device, Bacteria Concentrator, Dielectrophoresis, Escherichia coli, Impedance Analysis


Del Moral Zamora, B., Álvarez Azpeitia, J.M., Oliva Brañas, A.M., Colomer-Farrarons, J., Castellarnau, M., Miribel-Català, P., Homs-Corbera, A., Juárez, A., Samitier, J., (2015). Continuous flow dielectrophoretic concentrator enhancement based on dielectric poles Electrophoresis 36, (13), 1405–1413

We describe a novel continuous-flow cell concentrator microdevice based on dielectrophoresis, and its associated custom-made control unit. The performances of a classical interdigitated metal electrode-based dielectrophoresis microfluidic device and this enhanced version, that includes insulator-based pole structures, were compared using the same setup. Escherichia coli samples were concentrated at several continuous flows and the device's trapping efficiencies were evaluated by exhaustive cell counts. Our results show that pole structures enhance the retention up to 12.6%, obtaining significant differences for flow rates up to 20

Keywords: Concentrator, Dielectrophoresis, Escherichia coli, Lab-on-a-chip


Jaramillo, Maria del Carmen, Huttener, Mario, Alvarez, Juan Manuel, Homs-Corbera, Antoni, Samitier, Josep, Torrents, Eduard, Juárez, Antonio, (2015). Dielectrophoresis chips improve PCR detection of the food-spoiling yeast Zygosaccharomyces rouxii in apple juice Electrophoresis 36, (13), 1471-1478

DEP manipulation of cells present in real samples is challenging. We show in this work that an interdigitated DEP chip can be used to trap and wash a population of the food-spoiling yeast Zygosaccharomyces rouxii that contaminates a sample of apple juice. By previously calibrating the chip, the yeast population loaded is efficiently trapped, washed and recovered in a small-volume fraction which, in turn, can be used for efficient PCR detection of this yeast. DEP washing of yeast cells gets rid of PCR inhibitors present in apple juice and facilitates PCR analysis. This and previous works on the use of DEP chips to improve PCR analysis show that a potential use of DEP is to be used as a treatment of real samples prior to PCR.

Keywords: Dielectrophoresis, PCR, Saccharomyces, Yeast


del Moral Zamora, Beatriz, Manuel Álvarez Azpeitia, Juan, Brañas, Ana Ma Oliva, Colomer-Farrarons, Jordi, Castellarnau, Marc, Miribel-Català, Pere Ll, Homs-Corbera, Antoni, Juárez, Antonio, Samitier, Josep, (2015). Dielectrophoretic concentrator enhancement based on dielectric poles for continuously flowing samples Electrophoresis 36, (13), 1405-1413

We describe a novel continuous-flow cell concentrator micro-device based on dielectrophoresis (DEP), and its associated custom-made control unit. The performances of a classical interdigitated metal electrode-based DEP microfluidic device and this enhanced version, that includes insulator-based pole structures, were compared using the same setup. Escherichia coli (E. coli) samples were concentrated at several continuous flows and the device's trapping efficiencies were evaluated by exhaustive cell counts. Our results show that pole structures enhance the retention up to 12.6%, obtaining significant differences for flow rates up to 20 μl/min, when compared to an equivalent classical interdigitated electrodes setup. In addition, we performed a subsequent proteomic analysis to evaluate the viability of the biological samples after the long exposure to the actuating electrical field. No E. coli protein alteration in any of the two systems was observed.

Keywords: Concentrator, Dielectrophoresis, Escherichia coli, Lab- on- a- chip


Pardo, W. A., Mir, M., Samitier, J., (2015). Signal enhancement in ultraflat electrochemical DNA biosensors Electrophoresis 36, (16), 1905-1911

The ability of holding back the undesired molecules, but at the same time to provide the right distribution and orientation of the bioreceptors, are critical targets to reach an efficient hybridization and enhanced detection in electrochemical DNA biosensors. The main actors responsible of these key functions are the substrate of the sensor and the interface auto-assembled on it. In this paper we present the annealing as a method to improve commercial gold evaporated substrates for biosensor applications. The restructuring of granulated gold surface by means of annealing heating treatment leads to the formation of ultraflat gold lamellar terraces. The formation of terraces was characterized with scanning tunneling microscopy and optical interferometry. The performance of the sensor sensitivity on granular substrates and ultraflat substrates was studied, concerning the orientation and surface coverage of the bioreceptor interface applied in electrochemical biosensor. The hybridization efficiency of ferrocene-labeled DNA amplified by PCR was characterized with surface plasmon resonance and electrochemistry. The experimental results demonstrate that annealing process, positive influence on optical and voltammetric readings, due to a structured organization of the bioreceptors on the flat substrate, gaining more efficient immobilization and DNA hybridization. The results suggest the annealing as a powerful tool for improving gold substrates in biosensors applications.

Keywords: Annealing ultraflat surfaces, DNA biosensor, DNA hybridization, Electrochemistry, Self-assembled monolayer


de Oñate, L., Garreta, E., Tarantino, C., Martínez, E., Capilla, E., Navarro, I., Gutiérrez, J., Samitier, J., Campistol, J.M., Muñoz-Cánovas, P., Montserrat, N., (2015). Research on skeletal muscle diseases using pluripotent stem cells Muscle Cell and Tissue (ed. Sakuma, K.), InTech (Rijeka, Croatia) , 333-357

The generation of induced pluripotent stem cells (iPSCs), especially the generation of patient-derived pluripotent stem cells (PSCs) suitable for disease modelling in vitro, opens the door for the potential translation of stem-cell related studies into the clinic. Successful replacement, or augmentation, of the function of damaged cells by patient-derived differentiated stem cells would provide a novel cell-based therapy for skeletal muscle-related diseases. Since iPSCs resemble human embryonic stem cells (hESCs) in their ability to generate cells of the three germ layers, patient-specific iPSCs offer definitive solutions for the ethical and histo-incompatibility issues related to hESCs. Indeed human iPSC (hiPSC)-based autologous transplantation is heralded as the future of regenerative medicine. Interestingly, during the last years intense research has been published on disease-specific hiPSCs derivation and differentiation into relevant tissues/organs providing a unique scenario for modelling disease progression, to screen patient-specific drugs and enabling immunosupression-free cell replacement therapies. Here, we revise the most relevant findings in skeletal muscle differentiation using mouse and human PSCs. Finally and in an effort to bring iPSC technology to the daily routine of the laboratory, we provide two different protocols for the generation of patient-derived iPSCs.

Keywords: Pluripotent stem cells, Myogenic differentiation, Disease modelling, Patient-specific induced pluripotent stem cells, Muscular dystrophy


Caballero, D., Samitier, J., (2014). Different strategies for the fabrication of cell culture chambers for live-cell imaging studies Chips and Tips 14, (12), 1-5

Rigat, L., Homs, A., Samitier, J., (2014). Reservoir poly(dimethylsiloxane) cap fabrication Chips and Tips 14, (10), 1-4

Rigat, L., Homs, A., Samitier, J., (2014). Simple alignment marks patterning for multilayered master fabrication Chips and Tips 14, (3), 1-7

Rigat, L., Homs, A., Samitier, J., (2014). Simple fabrication of three-dimensional ramped microstructures using SU-8 negative photoresist Chips and Tips 14, (3), 1-5

Oliva, A. M., Homs-Corbera, A., Torrents, E., Juarez, A., Samitier, J., (2014). Synergystic effect of temperature and electric field intensity in Escherichia coli inactivation Micro and Nanosystems 6, (2), 79-86

Electric Fields are increasingly used to manipulate bacteria. However, there is no systematic and definitive study on how the different electric parameters change bacteria viability. Here we present a study on the effects of electric field intensity and temperature to bacterial cultures. Escherichia coli colonies have been exposed to different electric field intensities at 1MHz during 5 minutes by means of a microfluidic device specially designed for the experiment. From the analysis of the results it is possible to see that Escherichia coli survival rate diminishes when applying field intensities as low as 220V during 5 minutes. Death rates also increase when stronger fields are applied. However, viability of survived bacteria is maintained. Additionally, temperature shows a synergistic effect with voltage. When temperature was increased, results showed a stronger sensitivity of cells to the electric field. Moreover, the expression patterns of Outer Membrane Protein A and Ribosomal Proteins differ in control and treated samples, suggesting changes in bacterial metabolism and structure.

Keywords: E. coli, Electric field, Temperature, Viability


del Moral Zamora, B., Azpeitia, J. M. Á, Farrarons, J. C., Català, P. L. M., Corbera, A. H., Juárez, A., Samitier, J., (2014). Towards point-of-use dielectrophoretic methods: A new portable multiphase generator for bacteria concentration Micro and Nanosystems 6, (2), 71-78

This manuscript presents a portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0°, 90°, 180°, 270°) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia coli (E. coli) at 1 MHz while applying a continuous flow of 5 µL/min. The device functionalities were verified under different conditions, achieving an 83% trapping efficiency when counter-phased signals are used.

Keywords: Cell Concentrator, Class E amplifier, Dielectrophoresis, Electronics, Lab-on-a-chip (LOC), Low cost, Portable device


Lagunas, A., Garcia, A., Artés, J. M., Vida, Y., Collado, D., Pérez-Inestrosa, E., Gorostiza, P., Claros, S., Andrades, J. A., Samitier, J., (2014). Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion Nano Research 7, (3), 399-409

Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.

Keywords: Arginine-glycine-aspartic acid, Atomic force microscopy, Cell adhesion, Dendrimer, Focal adhesions, Scanning tunneling microscopy


Tahirbegi, I. B., Mir, M., Schostek, S., Schurr, M., Samitier, J., (2014). In vivo ischemia monitoring array for endoscopic surgery Biosensors and Bioelectronics 61, 124-130

An array with all-solid-state, potentiometric, miniaturized sensors for pH and potassium was developed to be introduced into the stomach or other sectors of the digestive tract by means of flexible endoscopy. These sensors perform continuous and simultaneous measurement of extracellular pH and potassium. This detection seeks to sense ischemia in the gastric mucosa inside the stomach, an event indicative of local microvascular perfusion and tissue oxygenation status. Our array is proposed as a medical tool to identify the occurrence of the ischemia after gastrointestinal or gastroesophageal anastomosis. The stability and feasibility of the miniaturized working and reference electrodes integrated in the array were studied under in vitro conditions, and the behavior of the potassium and pH ion-selective membranes were optimized to work under acidic gastric conditions with high concentrations of HCl. The array was tested in vivo in pigs to measure the ischemia produced by clamping the blood flow into the stomach. Our results indicate that ischemic and reperfusion states can be sensed in vivo and that information on tissue damage can be collected by this sensor array. The device described here provides a miniaturized, inexpensive, and mass producible sensor array for detecting local ischemia caused by unfavorable anastomotic perfusion and will thus contribute to preventing anastomotic leakage and failure caused by tissue necrosis.

Keywords: Endoscopy, Surgery, Tissue, Gastric anastomosis, Gastric conditions, Ion selective sensors, Ischemia, pH detection, Reference electrodes, Simultaneous measurement, Tissue oxygenation, Sensors


Rigat, L., Elizalde-Torrent, A., Bernabeu, M., De Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., Samitier, J., Del Portillo, H. A., (2014). A functional microengineered model of the human splenon-on-a-chip Lab on a Chip 14, (10), 1715-1724

The spleen is a secondary lymphoid organ specialized in the filtration of senescent, damaged, or infected red blood cells. This unique filtering capacity is largely due to blood microcirculation through filtration beds of the splenic red pulp in an open-slow microcirculation compartment where the hematocrit increases, facilitating the recognition and destruction of unhealthy red blood cells by specialized macrophages. Moreover, in sinusal spleens such as those of humans, blood in the open-slow microcirculation compartment has a unidirectional passage through interendothelial slits before reaching the venous system. This further physical constraint represents a second stringent test for erythrocytes ensuring elimination of those cells lacking deformability. With the aim of replicating the filtering function of the spleen on a chip, we have designed a novel microengineered device mimicking the hydrodynamic forces and the physical properties of the splenon, the minimal functional unit of the red pulp able to maintain filtering functions. In this biomimetic platform, we have evaluated the mechanical and physiological responses of the splenon using human red blood cells and malaria-infected cells. This novel device should facilitate future functional studies of the spleen in relation to malaria and other hematological disorders.


Van Heirstraeten, L., Spang, P., Schwind, C., Drese, K. S., Ritzi-Lehnert, M., Nieto, B., Camps, M., Landgraf, B., Guasch, F., Corbera, A. H., Samitier, J., Goossens, H., Malhotra-Kumar, S., Roeser, T., (2014). Integrated DNA and RNA extraction and purification on an automated microfluidic cassette from bacterial and viral pathogens causing community-acquired lower respiratory tract infections Lab on a Chip 14, (9), 1519-1526

In this paper, we describe the development of an automated sample preparation procedure for etiological agents of community-acquired lower respiratory tract infections (CA-LRTI). The consecutive assay steps, including sample re-suspension, pre-treatment, lysis, nucleic acid purification, and concentration, were integrated into a microfluidic lab-on-a-chip (LOC) cassette that is operated hands-free by a demonstrator setup, providing fluidic and valve actuation. The performance of the assay was evaluated on viral and Gram-positive and Gram-negative bacterial broth cultures previously sampled using a nasopharyngeal swab. Sample preparation on the microfluidic cassette resulted in higher or similar concentrations of pure bacterial DNA or viral RNA compared to manual benchtop experiments. The miniaturization and integration of the complete sample preparation procedure, to extract purified nucleic acids from real samples of CA-LRTI pathogens to, and above, lab quality and efficiency, represent important steps towards its application in a point-of-care test (POCT) for rapid diagnosis of CA-LRTI.


Prieto-Simón, B., Samitier, J., (2014). "signal off" aptasensor based on enzyme inhibition induced by conformational switch Analytical Chemistry 86, (3), 1437-1444

A novel sensing strategy for electrochemical aptamer-based sensors is presented. Nucleic acid aptamers are considered alternatives to antibodies. However, some of their intrinsic properties, such as that they can undergo conformational changes during the binding of the target, can be used to design novel sensing strategies. Unlike other electrochemical "signal off" aptamer-based sensors, we report a strategy based on enzymatic inhibition. Our approach shows the feasibility to detect small molecules based on the aptamer conformational change induced by the target that leads to the inhibition of the enzyme used as a label. Additionally, we prove the ability to regenerate the function of the aptasensor by simply applying a short potential pulse. As a proof-of-concept, the widely used aptamer for ochratoxin A (OTA) has been selected as a model. After self-assembling short oligonucleotides onto a gold electrode, complementary to the 3′ end of the aptamer, hybridization of the aptamer takes place. To investigate the mechanism induced by the OTA-binding, surface plasmon resonance assays were performed, which confirmed the conformational switch of the aptamer rather than the aptamer displacement by dehybridization from the DNA-modified sensor surface. The electrochemical sensor can successfully detect OTA in wine at the limits stipulated by the European Commission. Given its sensitivity, rapid and easy detection, and regeneration, it can be envisaged as screening tool for OTA detection. Moreover, this sensing strategy has the potential to be applied to other aptamer-based biochemical assays for the detection of small molecules in the fields of food safety, environmental monitoring, and medical diagnostics.


Comelles, J., Caballero, D., Voituriez, ., Hortigüela, V., Wollrab, V., Godeau, A. L., Samitier, J., Martínez, E., Riveline, D., (2014). Cells as active particles in asymmetric potentials: Motility under external gradients Biophysical Journal 107, (7), 1513-1522

Cell migration is a crucial event during development and in disease. Mechanical constraints and chemical gradients can contribute to the establishment of cell direction, but their respective roles remain poorly understood. Using a microfabricated topographical ratchet, we show that the nucleus dictates the direction of cell movement through mechanical guidance by its environment. We demonstrate that this direction can be tuned by combining the topographical ratchet with a biochemical gradient of fibronectin adhesion. We report competition and cooperation between the two external cues. We also quantitatively compare the measurements associated with the trajectory of a model that treats cells as fluctuating particles trapped in a periodic asymmetric potential. We show that the cell nucleus contributes to the strength of the trap, whereas cell protrusions guided by the adhesive gradients add a constant tunable bias to the direction of cell motion.


Tong, Z., Seira, O., Casas, C., Reginensi, D., Homs-Corbera, A., Samitier, J., Del Río, J. A., (2014). Engineering a functional neuro-muscular junction model in a chip RSC Advances 4, (97), 54788-54797

Healthy bi-directional intracellular transport along the axons between the somatodendritic and synaptic terminals is crucial to maintain the function and viability of neurons. When misbalanced, there is neuronal homeostasis failure that compromises its function and viability. In fact, several neurodegenerative diseases originate from misbalanced axonal transport and function. Thus numerous techniques have been developed to establish and maintain neuronal cultures in compartmented microfluidic devices to better understand these processes mimicking neuronal polarization. Although useful, these in vitro platforms do not allow for a full specific and temporal analysis in a completely monitored way. In this study, we have utilized a microfluidic system with large open cell culture reservoirs to precisely control neuronal microenvironments, capable of mimicking axon transport and synapse formation and to facilitate their analysis. We demonstrate using this lab-on-a-chip system for long-term motoneuron co-culture with C2C12-derived myotubes to mimic neuro-muscular junction (NMJ) formation. Furthermore, by integration with a calcium (Ca2+) imaging technique, we have proved the NMJ functionality in-chip through KCl-induced Ca2+ transient in connected myotubes. This platform can potentially become a useful tool as a straightforward, reproducible, and high-throughput in vitro model for basic NMJ research, and for high-throughput drug screening.


Oberhansl, S., Garcia, A., Lagunas, A., Prats-Alfonso, E., Hirtz, M., Albericio, F., Fuchs, H., Samitier, J., Martinez, E., (2014). Mesopattern of immobilised bone morphogenetic protein-2 created by microcontact printing and dip-pen nanolithography influence C2C12 cell fate RSC Advances 4, (100), 56809-56815

Dip-pen nanolithography and microcontact printing were used to fabricate mesopatterned substrates for cell differentiation experiments. A biotin-thiol was patterned on gold substrates and subsequently functionalised with streptavidin and biotinylated bone morphogenetic protein-2 (BMP-2). The feasibility of mesopatterned substrates containing immobilised BMP-2 was proven by obtaining similar differentiation outcomes compared to the growth factor in solution. Therefore, these substrates might be suitable for replacing conventional experiments with BMP-2 in solution.

Keywords: Bone morphogenetic protein-2, C2C12 cells, Dip-pen nanolithography, Micro contact printing


Garcia, A., Hortigüela, V., Lagunas, A., Cortina, C., Montserrat, N., Samitier, J., Martinez, E., (2014). Protein patterning on hydrogels by direct microcontact printing: application to cardiac differentiation RSC Advances 4, (55), 29120-29123

An extended microcontact printing technique to chemically pattern hydrogels is reported. The procedure employs standard polydimethylsiloxane stamps and requires minor pre-processing of the hydrogels by freeze-drying. Micropatterned Matrigel[trade mark sign] and gelatin hydrogels induce NIH-3T3 cell alignment and elongation. Furthermore, human embryonic stem cells cultured on fibronectin-patterned hydrogels display beating foci earlier than those cultured on non-patterned substrates.


Zaffino, R. L., Mir, M., Samitier, J., (2014). Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor Nanotechnology 25, (10), 105501 (8)

We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

Keywords: Biosensor, DNA hybridization, Labelfree, Nanogap, Single nucleotide mutation


Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)


González, L., Otero, J., Agusil, J. P., Samitier, J., Adan, J., Mitjans, F., Puig-Vidal, M., (2014). Micropattern of antibodies imaged by shear force microscopy: Comparison between classical and jumping modes Ultramicroscopy 136, 176-184

Quartz tuning fork devices are increasingly being used as nanosensors in Scanning Probe Microscopy. They offer some benefits with respect to standard microfabricated cantilevers in certain experimental setups including the study of biomolecules under physiological conditions. In this work, we compare three different working modes for imaging micropatterned antibodies with quartz tuning fork sensors: apart from the classical amplitude and frequency modulation strategies, for first time the jumping mode is implemented using tuning forks. Our results show that the molecules suffer less degradation when working in the jumping mode, due to the reduction of the interaction forces.


Juanola-Feliu, E., Miribel-Català, P. L., Avilés, C. P., Colomer-Farrarons, J., González-Piñero, M., Samitier, J., (2014). Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics Sensors 14, (10), 19275-19306

The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device.

Keywords: Biocompatible, Biosensor, Biotelemetry, Implantable multi-sensor, Innovation, KET, Nanomedicine, Personalized medicine, Biotelemetry, Innovation, Medical nanotechnology, Biocompatible, Implantable system, In-vivo, KET, Multi sensor, Personalized medicines, Theranostics, Biosensors


Mir, M., Lugo, R., Tahirbegi, I. B., Samitier, J., (2014). Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications Sensors 14, (7), 11844-11854

Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.

Keywords: Biomedicine, Electrochemistry, Endoscope, Implantable device, Ion-selective electrode (ISE) sensor, Ischemia, pH detection, Biocompatibility, Chemical sensors, Electrochemistry, Electrodes, Electropolymerization, Endoscopy, Functional polymers, Implants (surgical), Ion selective electrodes, Medical applications, Polyvinyl chlorides, Stabilization, Biomedical applications, Biomedicine, Implantable devices, Ion selective sensors, Ischemia, Membrane instability, pH detection, Poly(3 ,4 ethylenedioxythiophene) (PEDOT), Ion selective membranes


Tahirbegi, I. B., Alvira, M., Mir, M., Samitier, J., (2014). Simple and fast method for fabrication of endoscopic implantable sensor arrays Sensors 14, (7), 11416-11426

Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.

Keywords: Chemical sensors, Cyclic voltammetry, Electrochemistry, Endoscopy, Fabrication, Implants (surgical), Microelectrodes, Needles, Nitrates, Scanning electron microscopy, Biomedicine, Fabricated sensors, Fabrication equipment, Implantable devices, Implantable sensors, Optical interferometry, Planar electrode, Roughness factor, Ion selective electrodes


Oller-Moreno, S., Pardo, A., Jimenez-Soto, J. M., Samitier, J., Marco, S., (2014). Adaptive Asymmetric Least Squares baseline estimation for analytical instruments SSD 2014 Proceedings 11th International Multi-Conference on Systems, Signals & Devices (SSD) , IEEE (Castelldefels-Barcelona, Spain) , 1569846703

Automated signal processing in analytical instrumentation is today required for the analysis of highly complex biomedical samples. Baseline estimation techniques are often used to correct long term instrument contamination or degradation. They are essential for accurate peak area integration. Some methods approach the baseline estimation iteratively, trying to ignore peaks which do not belong to the baseline. The proposed method in this work consists of a modification of the Asymmetric Least Squares (ALS) baseline removal technique developed by Eilers and Boelens. The ALS technique suffers from bias in the presence of intense peaks (in relation to the noise level). This is typical of diverse instrumental techniques such as Gas Chromatography-Mass Spectrometry (GC-MS) or Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). In this work, we propose a modification (named psalsa) to the asymmetry weights of the original ALS method in order to better reject large peaks above the baseline. Our method will be compared to several versions of the ALS algorithm using synthetic and real GC signals. Results show that our proposal improves previous versions being more robust to parameter variations and providing more accurate peak areas.

Keywords: Gas chromatography, Instruments, Radioactivity measurement, Signal processing, Analytical instrument, Analytical Instrumentation, Asymmetric least squares, Baseline estimation, Baseline removal, Gas chromatography-mass spectrometries (GC-MS), Instrumental techniques, Noise levels, Iterative methods


Rigat, L., Elizalde, A., Del Portillo, H. A., Homs-Corbera, A., Samitier, J., (2014). Selective cell culturing step using laminar co-flow to enhance cell culture in splenon-on-a-chip biomimetic platform MicroTAS 2014 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences , CBMS (San Antonio, USA) , 769-771

Constant evolution and improvements on areas such as tissue engineering, microfluidics and nanotechnology have made it possible to partially close the gap between conventional in vitro cell cultures and animal model-based studies. A step forward in this field concerns organ-on-chip technologies, capable of reproducing the most relevant physiological features of an organ in a microfluidic platform. In this work we have exploited the capabilities of laminar co-flow inside our biomimetic platform, the splenon-on-a-chip, in order to enhance cell culture inside its channels to better mimic the spleen's environment. © 14CBMS.

Keywords: Cell culture, Co-flow, Laminar flow, Organ-on-a-chip, Spleen


Oliva, A. M., Homs, A., Torrents, E., Juarez, A., Samitier, J., (2014). Effect of electric field and temperature in E.Coli viability IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer (Seville, Spain) 41, 1833-1836

Electromagnetic Fields are increasingly used to manipulate bacteria. However, there is no systematic and definitive study on how the different electric parameters change bacteria viability. Here we present preliminary data on the effect of electric field intensity and temperature applica- tion. E. Coli colonies have been exposed to different voltages at 1MHz during 5 minutes by means of a custom-made micro- fluidic device. Results show that E.Coli survival rate is already reduced by applying field intensities as low as 220V/cm during 5 minutes. The use of stronger fields resulted in death rates increase also. Viability of survived bacteria was maintained. On the other hand, temperature has shown a synergistic effect with voltage. When temperature is increased results seem to indicate stronger sensitivity of cells to the electric field. It is necessary to continue studying the contribution of other para- meters as intensity, time, frequency or concentration, to study further synergies.

Keywords: E. Coli, Electromagnetic Field, Temperature, Viability


Rigat, L., Bernabeu, M., Elizalde, A., de Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., del Portillo, H. A., Samitier, J., (2014). Human splenon-on-a-chip: Design and validation of a microfluidic model resembling the interstitial slits and the close/fast and open/slow microcirculations IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer (Seville, Spain) 41, 884-887

Splenomegaly, albeit variably, is a landmark of malaria infection. Due to technical and ethical constraints, however, the role of the spleen in malaria remains vastly unknown. The spleen is a complex three-dimensional branched vasculature exquisitely adapted to perform different functions containing closed/rapid and open/slow microcirculations, compartmentalized parenchyma (red pulp, white pulp and marginal zone), and sinusoidal structure forcing erythrocytes to squeeze through interstitial slits before reaching venous circulation. Taking into account these features, we have designed and developed a newfangled microfluidic device of a human splenon-on-a-chip (the minimal functional unit of the red pulp facilitating blood-filtering and destruction of malarial-infected red blood cells). Our starting point consisted in translating splenon physiology to the most similar microfluidic network, mimicking the hydrodynamic behavior of the organ, to evaluate and simulate its activities, mechanics and physiological responses and, therefore, enable us to study biological hypotheses. Different physiological features have been translated into engineering elements that can be combined to integrate a biomimetic microfluidic spleen model. The device is fabricated in polydimethylsiloxane (PDMS), a biocompatible polymer, irreversibly bonded to glass. Microfluidics analyses have confirmed that 90% of the blood circulates through a fast-flow compartment whereas the remaining 10% circulates through a slow compartment, equivalently to what has been observed in a real spleen. Moreover, erythrocytes and reticulocytes going through the slow-flow compartment squeeze at the end of it through 2μm physical constraints resembling interstitial slits to reach the closed/rapid circulation.

Keywords: Malaria, Microfluidics, Organ-on-a-chip, Spleen


Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263

This chapter contains sections titled: * Introduction * Biomedical Devices for In Vivo Analysis * Conclusions and Final Recommendations * References

Keywords: Technology transfer, Innovation management, Nanotechnology, Nanobiosensor, Diabetes, Biomedical device, Implantable biosensors


del Moral Zamora, B., Azpeitia, J. M. Á, Farrarons, J. C., Català, P. L. M., Corbera, A. H., Juárez, A., Samitier, J., (2014). Towards point-of-use dielectrophoretic methods: A new portable multiphase generator for bacteria concentration IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 856-859

This manuscript presents portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0º, 90º, 180º, 270º) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia Coli at 1 MHz while applying a continuous flow of 5

Keywords: Cell Concentrator, Class E amplifier, Dielectrophoresis, Electronics, Lab-on-a-chip (LOC), Low cost, Portable device


Valle-Delgado, J. J., Urbán, P., Fernàndez-Busquets, X., (2013). Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy Nanoscale 5, (9), 3673-3680

Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.


Barreiros dos Santos, M., Agusil, J. P., Prieto-Simón, B., Sporer, C., Teixeira, V., Samitier, J., (2013). Highly sensitive detection of pathogen Escherichia coli O157: H7 by electrochemical impedance spectroscopy Biosensors and Bioelectronics 45, (1), 174-180

The presence of enterohemorrhagic Escherichia coli bacteria in food can cause serious foodborne disease outbreaks. Early detection and identification of these pathogens is extremely important for public health and safety. Here we present a highly sensitive label-free immunosensor for the detection of pathogenic E. coli O157:H7. Anti-E. coli antibodies were covalently immobilised onto gold electrodes via a self-assembled monolayer (SAM) of mercaptohexadecanoic acid and the pathogenic bacteria were detected by electrochemical impedance spectroscopy (EIS). Surface Plasmon Resonance (SPR) was used to monitor the antibody immobilisation protocol and antibody patterned surfaces were used to demonstrate the specificity of the antibody coated surfaces against the pathogenic bacteria. The immunosensor showed a very low limit of detection (2CFU/mL) and a large linear range (3×10-3×104CFU/mL). Finally, the selectivity of the sensor was demonstrated and no significant adsorption of Salmonella typhimurium was observed.


Tahirbegi, Islam Bogachan, Mir, Monica, Samitier, Josep, (2013). Real-time monitoring of ischemia inside stomach Biosensors and Bioelectronics 40, (1), 323-328

The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications.

Keywords: Index Medicus


Lagunas, A., Comelles, J., Oberhansl, S., Hortigüela, V., Martínez, E., Samitier, J., (2013). Continuous bone morphogenetic protein-2 gradients for concentration effect studies on C2C12 osteogenic fate Nanomedicine: Nanotechnology, Biology, and Medicine 9, (5), 694-701

Cells can respond to small changes in a varying concentration of exogenous signaling molecules. Here we propose the use of continuous surface chemical gradients for the in-depth study of dose-dependent effects on cells. A continuous surface gradient of bone morphogenetic protein-2 (BMP-2) is presented. The gradient covers a narrow range of surface densities (from 1.4 to 2.3 pmol/cm2) with a shallow slope (0.9 pmol/cm3). These characteristics represent a quasi-homogeneous surface concentration at the cell scale, which is crucial for cell screening studies. Cell fate evaluation at early stages of osteogenesis in C2C12 cells, indicates the potential of continuous gradients for in vitro screening applications.


Novo, S., Penon, O., Barrios, L., Nogués, C., Santaló, J., Durán, S., Gómez-Matínez, R., Samitier, J., Plaza, J. A., Pérez-García, L., Ibáñez, E., (2013). Direct embryo tagging and identification system by attachment of biofunctionalized polysilicon barcodes to the zona pellucida of mouse embryos Human Reproduction 28, (6), 1519-1527

STUDY QUESTION Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? SUMMARY ANSWER The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. WHAT IS KNOWN ALREADY Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. STUDY DESIGN, SIZE, DURATION Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). PARTICIPANTS/ MATERIALS, SETTING, METHODS Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. MAIN RESULTS AND THE ROLE OF CHANCE Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading system, although these rates could be increased to 100% by simply rotating the embryos during the reading process. LIMITATIONS, REASONS FOR CAUTION The direct embryo tagging developed here has exclusively been tested in mouse embryos. Its effectiveness in other species, such as the human, is currently being tested. WIDER IMPLICATIONS OF THE FINDINGS The direct embryo tagging system developed here, once tested in human embryos, could provide fertility clinics with a novel tool to reduce the risk of mix-ups in human assisted reproduction technologies. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Spanish Ministry of Education and Science (TEC2011-29140-C03) and by the Generalitat de Catalunya (2009SGR-00282).

Keywords: Assisted reproductive technologies (ART), Biofunctionalization, Embryo tagging, Mix-ups, Traceability


Fernàndez-Busquets, X., (2013). Amyloid fibrils in neurodegenerative diseases: villains or heroes? Future Medicinal Chemistry 5, (16), 1903-1906

Fernàndez-Busquets, X., (2013). Heparin-functionalized nanocapsules: Enabling targeted delivery of antimalarial drugs Future Medicinal Chemistry 5, (7), 737-739

Caballero, D., Fumagalli, L., Teixidor, F., Samitier, J., Errachid, A., (2013). Directing polypyrrole growth by chemical micropatterns: A study of high-throughput well-ordered arrays of conductive 3D microrings Sensors and Actuators B: Chemical 177, 1003-1009

An array of well-ordered conducting polypyrrole microrings doped with cobaltabisdicarbollide [Co(C2B9H11) 2]- anions was fabricated by means of electropolymerization and submerged micro-contact printing techniques. The different conductive properties of the micropatterned thiols acted as a template for directing the electrochemical 3D growth of the microstructures over large areas. X-ray photoelectron spectroscopy characterization confirmed the presence of this unusual doping anion within the polymer. Its intrinsic properties together with hydrophobic interactions with the thiols guided the formation of the ring structures. A topographic study by atomic force microscopy gave insights into the PPy/[Co(C2B9H11) 2]- growing mechanism which is in agreement with the theoretical model of metal growth. Finally, the conductive properties of the microstructures were addressed by conductive-atomic force microscopy, showing a highly conductive behaviour. This methodology using cobaltabisdicarbollide as dopant anion could have important applications in organic microelectronics for the development of biosensors, in cell microarrays and for the fabrication of polymer-based microencapsulators.


Castangia, I., Manca, M. L., Matricardi, P., Sinico, C., Lampis, S., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2013). Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles International Journal of Pharmaceutics 456, (1), 1-9

The aim of the current study was to improve the knowledge of drug-glycol-phospholipid-interactions and their effects in lamellar vesicle suitability as drug delivery systems. Liposomes were prepared using hydrogenated soy phosphatidylcholine (P90H, 60. mg/ml) and diclofenac sodium salt at two concentrations (5-10. mg/ml). To obtain innovative vesicles two permeation enhancers with glycol group, diethyleneglycol monoethyl ether and propylene glycol, were added to the water phase at different ratios (5%, 10%, and 20%).Vesicle organization was deeply investigated by physico-chemical characterization, including differential scanning calorimetry and small-angle diffraction signal analysis while macroscopic structure behavior was evaluated by rheological studies. Results evidenced that the presence of the penetration enhancer and diclofenac sodium salt led to structural rearrangements within and among vesicles forming a tridimensional and complex architecture in which vesicles were closely packed and interconnected. This new design allowed a change in the physical state of dispersions that became highly viscous liquid or soft-solid-like, thus forming an ideal system for topical application able of both adhering to the skin and delivering the drug.


Prats-Alfonso, E., Oberhansl, S., Lagunas, A., Martínez, E., Samitier, J., Albericio, F., (2013). Effective and versatile strategy for the total solid-phase synthesis of alkanethiols for biological applications European Journal of Organic Chemistry 2013, (7), 1233-1239

Biological applications increasingly demand tailored surfaces with a range of functional groups. Herein we describe a straightforward and inexpensive method based exclusively on solid-phase synthesis for the preparation of a variety of customized alkanethiols (ATs). The technique overcomes all the difficulties encountered during the preparation of these molecules in solution. The procedure allows the use of ATs without further purification for the preparation of self-assembled monolayers on gold, typically used to achieve functional group diversity on this surface. This paper describes a straightforward and inexpensive method based exclusively on solid-phase synthesis for the preparation of a variety of customized alkanethiols (ATs). The technique allows a variety of ATs to be obtained in only three steps, overcoming the difficulties encountered during their preparation in solution.


Rodriguez-Segui, Santiago A., Ortuno, Maria Jose, Ventura, Francesc, Martinez, Elena, Samitier, Josep, (2013). Simplified microenvironments and reduced cell culture size influence the cell differentiation outcome in cellular microarrays Journal of Materials Science: Materials in Medicine 24, (1), 189-198

Cellular microarrays present a promising tool for multiplex evaluation of the signalling effect of substrate-immobilized factors on cellular differentiation. In this paper, we compare the early myoblast-to-osteoblast cell commitment steps in response to a growth factor stimulus using standard well plate differentiation assays or cellular microarrays. Our results show that restraints on the cell culture size, inherent to cellular microarrays, impair the differentiation outcome. Also, while cells growing on spots with immobilised BMP-2 are early biased towards the osteoblast fate, longer periods of cell culturing in the microarrays result in cell proliferation and blockage of osteoblast differentiation. The results presented here raise concerns about the efficiency of cell differentiation when the cell culture dimensions are reduced to a simplified microspot environment. Also, these results suggest that further efforts should be devoted to increasing the complexity of the microspots composition, aiming to replace signalling cues missing in this system.


Diéguez, Lorena, Caballero, David, Calderer, Josep, Moreno, Mauricio, Martínez, Elena, Samitier, Josep, (2012). Optical gratings coated with thin Si3N4 layer for efficient immunosensing by optical waveguide lightmode spectroscopy Biosensors 2, (2), 114-126

New silicon nitride coated optical gratings were tested by means of Optical Waveguide Lightmode Spectroscopy (OWLS). A thin layer of 10 nm of transparent silicon nitride was deposited on commercial optical gratings by means of sputtering. The quality of the layer was tested by x-ray photoelectron spectroscopy and atomic force microscopy. As a proof of concept, the sensors were successfully tested with OWLS by monitoring the concentration dependence on the detection of an antibody-protein pair. The potential of the Si3N4 as functional layer in a real-time biosensor opens new ways for the integration of optical waveguides with microelectronics.

Keywords: Silicon nitride, Optical gratings, Waveguide, Biosensor


Oberhansl, Sabine, Hirtz, Michael, Lagunas, Anna, Eritja, Ramon, Martinez, Elena, Fuchs, Harald, Samitier, Josep, (2012). Facile modification of silica substrates provides a platform for direct-writing surface click chemistry Small 8, (4), 541-545

Lagunas, Anna , Comelles, Jordi, Martínez, Elena, Prats-Alfonso, Elisabet , Acosta, Gerardo A., Albericio, Fernando , Samitier, Josep , (2012). Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects Nanomedicine: Nanotechnology, Biology and Medicine 8, (4), 432-439

Cell adhesion onto bioengineered surfaces is affected by a number of variables, including the former substrate derivatization process. In this investigation, we studied the correlation between cell adhesion and cell–adhesive ligand surface concentration and organization due to substrate modification. For this purpose, Arg-Gly-Asp (RGD) gradient surfaces were created on poly(methyl methacrylate) substrates by continuous hydrolysis and were then grafted with biotin-PEG-RGD molecules. Cell culture showed that adhesion behavior changes in a nonlinear way in the narrow range of RGD surface densities assayed (2.8 to 4.4 pmol/cm2), with a threshold value of 4.0 pmol/cm2 for successful cell attachment and spreading. This nonlinear dependence may be explained by nonhomogeneous RGD surface distribution at the nanometre scale, conditioned by the stochastic nature of the hydrolysis process. Atomic force microscopy analysis of the gradient surface showed an evolution of surface morphology compatible with this hypothesis.

Keywords: RGD gradient, Cell adhesion, Poly(methyl methacrylate), Hydrolysis, Biotin-streptavidin


Mir, Mònica , Tahirbegi, Islam Bogachan , Valle-Delgado, Juan José , Fernàndez-Busquets, X., Samitier, Josep , (2012). In vitro study of magnetite-amyloid Nanomedicine: Nanotechnology, Biology and Medicine 8, (6), 974-980

Biogenic magnetite (Fe3O4) has been identified in human brain tissue. However, abnormal concentration of magnetite nanoparticles in the brain has been observed in different neurodegenerative pathologies. In the case of Alzheimer's disease (AD), these magnetic nanoparticles have been identified attached to the characteristic brain plaques, which are mainly formed by fibrils of amyloid

Keywords: Alzheimer's disease, Biogenic magnetite, Amyloid β peptide (Aβ), Superconducting quantum interference, Scanning electron microscope, Surface plasmon resonance, Magnetic force microscopy


Esquivel, Juan Pablo , Castellarnau, Marc , Senn, Tobias , Löchel, Bernd , Samitier, Josep , Sabaté, Neus , (2012). Fuel cell-powered microfluidic platform for lab-on-a-chip applications Lab on a Chip 12, (1), 74-79

The achievement of a higher degree of integration of components – especially micropumps and power sources – is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (mDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO2 from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4–18 mL min 1 while having an available power between 1–4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO2 pumping action to flow the required analytes through a particular microfluidic design.

Keywords: micro direct methanol fuel cell (mDMFC), Lab-on-a-chip (LOC), Microfluidic device


Esquivel, J. P., Colomer-Farrarons, J., Castellarnau, M., Salleras, M., del Campo, F. J., Samitier, J., Miribel-Catala, P., Sabate, N., (2012). Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device Lab on a Chip 12, (21), 4232-4235

The present paper reports for the first time the integration of a microfluidic system, electronics modules, amperometric sensor and display, all powered by a single micro direct methanol fuel cell. In addition to activating the electronic circuitry, the integrated power source also acts as a tuneable micropump. The electronics fulfil several functions. First, they regulate the micro fuel cell output power, which off-gas controls the flow rate of different solutions toward an electrochemical sensor through microfluidic channels. Secondly, as the fuel cell powers a three-electrode electrochemical cell, the electronics compare the working electrode output signal with a set reference value. Thirdly, if the concentration measured by the sensor exceeds this threshold value, the electronics switch on an integrated organic display. This integrated approach pushes forward the development of truly autonomous point-of-care devices relying on electrochemical detection.


Parra-Cabrera, C., Sporer, C., Rodriguez-Villareal, I., Rodriguez-Trujillo, R., Homs-Corbera, A., Samitier, J., (2012). Selective in situ functionalization of biosensors on LOC devices using laminar co-flow Lab on a Chip 12, (20), 4143-4150

Many applications involving lab-on-a-chip (LOC) devices are prevented from entering the market because of difficulties to achieve mass production and impart suitable properties allowing long-term storage. To integrate biosensors on these microfluidic chips, one of the main restrictions is the fabrication and stability of the molecular modifications that must be performed on the surfaces of the sensors for a given application. The complexity of the problem increases exponentially when the LOC integrates several of these sensors. Here we present a system based on laminar co-flow to perform an on-chip selective surface bio-functionalization of LOC-integrated sensors. This method has the advantage that the surface modification protocols are performed in situ before analyte detection. This approach reduces the burdens during LOC fabrication, keeping the required reagents stored outside of the detection structure in suitable wet conditions. The proof of concept is demonstrated through an optical characterization followed by electronic detection based on a novel differential impedance measurement setup. The system can be easily scaled to incorporate several sensors with distinct biosensing targets in a single chip.


Yang, Cheng, Lates, Vasilica, Prieto-Simón, Beatriz, Marty, Jean-Louis, Yang, Xiurong, (2012). Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A Biosensors and Bioelectronics 32, (1), 208-212

We report an aptasensor for biosensing of Ochratoxin A (OTA) using aptamer-DNAzyme hairpin as biorecognition element. The structure of this engineered nucleic acid includes the horseradish peroxidase (HRP)-mimicking DNAzyme and the OTA specific aptamer sequences. A blocking tail captures a part of these sequences in the stem region of the hairpin. In the presence of OTA, the hairpin is opened due to the formation of the aptamer–analyte complex. As a result, self-assembly of the active HRP-mimicking DNAzyme occurs. The activity of this DNAzyme is linearly correlated with OTA concentration up to 10 nM, showing a limit of detection of 2.5 nM.

Keywords: Ochratoxin A, Aptamer, G-quadruplex, DNAzyme, Hairpin


Penon, O., Novo, S., Duran, S., Ibanez, E., Nogues, C., Samitier, J., Duch, M., Plaza, J. A., Perez-Garcia, L., (2012). Efficient biofunctionalization of polysilicon barcodes for adhesion to the zona pellucida of mouse embryos Bioconjugate Chemistry 23, (12), 2392-2402

Cell tracking is an emergent area in nano-biotechnology, promising the study of individual cells or the identification of populations of cultured cells. In our approach, microtools designed for extracellular tagging are prepared, because using biofunctionalized polysilicon barcodes to tag cell membranes externally avoids the inconveniences of cell internalization. The crucial covalent biofunctionalization process determining the ultimate functionality was studied in order to find the optimum conditions to link a biomolecule to a polysilicon barcode surface using a self-assembled monolayer (SAM) as the connector. Specifically, a lectin (wheat germ agglutinin, WGA) was used because of its capacity to recognize some specific carbohydrates present on the surface of most mammalian cells. Self-assembled monolayers were prepared on polysilicon surfaces including aldehyde groups as terminal functions to study the suitability of their covalent chemical bonding to WGA. Some parameters, such as the polysilicon surface roughness or the concentration of WGA, proved to be crucial for successful biofunctionalization and bioactivity. The SAMs were characterized by contact angle measurements, time-of-flight secondary ion mass spectrometry (TOF-SIMS), laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), and atomic force microscopy (AFM). The biofunctionalization step was also characterized by fluorescence microscopy and, in the case of barcodes, by adhesion experiments to the zona pellucida of mouse embryos. These experiments showed high barcode retention rates after 96 h of culture as well as high embryo viability to the blastocyst stage, indicating the robustness of the biofunctionalization and, therefore, the potential of these new microtools to be used for cell tagging.

Keywords: Self-assembled monolayers, Wheat-germ-agglutinin, Protein immobilization strategies, Mass-spectrometry, Cell-surface, Petide, Binding, Identifications, Nanoparticles, Recognition


Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry 23, (11), 2183-2191

The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).

Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding


Caballero, D., Martinez, E., Bausells, J., Errachid, A., Samitier, J., (2012). Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface Analytica Chimica Acta 720, 43-48

In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3N 4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3N 4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2/Si 3N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 -13-10 -7M were detected, showing a sensitivity of 0.128ΩμM -1 and a limit of detection of 10 -14M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.

Keywords: Aldehyde, Electrochemical impedance spectroscopy, Human serum albumin, Immunosensor, Silicon nitride, Bovine serum albumins, Chemical reagents, Complex samples, Covalent binding, Detection capability, Electrochemical impedance, Electrochemical impedance spectroscopy measurements, Functionalizations, Human serum albumins, Impedimetric immunosensors, Label free, Limit of detection, Linear range, Protein concentrations, Silicon-based, Specific detection, Aldehydes


Comelles, J., Hortigüela, V., Samitier, J., Martinez, E., (2012). Versatile gradients of covalently bound proteins on microstructured substrates Langmuir 28, (38), 13688-13697

In this work, we propose an easy method to produce highly tunable gradients of covalently bound proteins on topographically modified poly(methyl methacrylate). We used a rnicrofluidic approach to obtain linear gradients with high slope (0.5 pmol.cm(-2).mm(-1)), relevant at the single-cell level. These protein gradients were characterized using fluorescence microscopy and surface plasmon resonance. Both experimental results and theoretical modeling on the protein gradients generated have proved them to be highly reproducible, stable up to 7 days, and easily tunable. This method enables formation of versatile cell culture platforms combining both complex biochemical and physical cues in an attempt to approach in vitro cell culture methods to in vivo cellular microenvironments.

Keywords: Cell-migration, Microfluidic channel, Surface, Streptavidin, Molecules, Topography, Mechanisms, Generation, Responses, Guidance


Campas, Monica, Garibo, Diana, Prieto-Simon, Beatriz, (2012). Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins Analyst 137, (5), 1055-1067

This article gives an overview of the biosensors for the analysis of mycotoxins, marine toxins and cyanobacterial toxins, describing in depth the electrochemical biosensors that incorporate nanobiotechnological concepts. Firstly, it presents tailor-designed biomolecules, such as recombinant enzymes, recombinant antibody fragments and aptamers as novel biorecognition elements in biosensors. It also reviews the use of metallic nanoparticles (NPs) and carbon nanotubes (CNTs) aiming at improving the electrochemical transduction strategies. Finally, the exploitation of magnetic particles (MPs) as immobilisation carriers in flow-systems and the development of arrays are also described. The incorporation of these nanobiotechnological concepts provides with electrochemical biosensors with superior analytical performance in terms of specificity, sensitivity, stability and analysis time.


Calò, A., Sanmartí-Espinal, M., Iavicoli, P., Persuy, M. A., Pajot-Augy, E., Gomila, G., Samitier, J., (2012). Diffusion-controlled deposition of natural nanovesicles containing G-protein coupled receptors for biosensing platforms Soft Matter 8, (46), 11632-11643

Natural vesicles produced from genetically engineered cells with tailored membrane receptor composition are promising building blocks for sensing biodevices. This is particularly true for the case of G-protein coupled receptors (GPCRs) present in many sensing processes in cells, whose functionality crucially depends on their lipid environment. However, the controlled production of natural vesicles containing GPCRs and their reproducible deposition on biosensor surfaces are among the outstanding challenges in the road map to realize practical biomolecular devices based on GPCRs. In this work we present the production and characterization of membrane nanovesicles from Saccharomyces cerevisiae containing heterologously expressed olfactory receptors - a member of the family of GPCRs - and study their deposition onto substrates used as biosensor supports. We show by direct observation with Atomic Force Microscopy that nanovesicles deposit and flatten without rupturing on glass substrates following approximately a diffusive law. We show that surface coverages larger than 20-25% of the substrate can be reproducibly achieved under practical nanovesicle concentrations and reasonable time scales, while keeping to the minimum the presence of background residuals coming from the nanovesicles production process. Surface chemistry modification of gold substrates indicates a higher affinity of natural nanovesicles for acid modified surfaces as compared to amino or alcohol modified surfaces. Present results constitute an important step in the practical realization of biosensor devices based on natural nanovesicles integrating G-protein coupled membrane receptors.


Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides


Villar-Pique, A., De Groot, N. S., Sabaté, R., Acebrón, S. P., Celaya, G., Fernàndez-Busquets, X., Muga, A., Ventura, S., (2012). The effect of amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity Journal of Molecular Biology 421, (2-3), 270-281

The formation of aggregates by misfolded proteins is thought to be inherently toxic, affecting cell fitness. This observation has led to the suggestion that selection against protein aggregation might be a major constraint on protein evolution. The precise fitness cost associated with protein aggregation has been traditionally difficult to evaluate. Moreover, it is not known if the detrimental effect of aggregates on cell physiology is generic or depends on the specific structural features of the protein deposit. In bacteria, the accumulation of intracellular protein aggregates reduces cell reproductive ability, promoting cellular aging. Here, we exploit the cell division defects promoted by the intracellular aggregation of Alzheimer's-disease-related amyloid β peptide in bacteria to demonstrate that the fitness cost associated with protein misfolding and aggregation is connected to the protein sequence, which controls both the in vivo aggregation rates and the conformational properties of the aggregates. We also show that the deleterious impact of protein aggregation on bacterial division can be buffered by molecular chaperones, likely broadening the sequential space on which natural selection can act. Overall, the results in the present work have potential implications for the evolution of proteins and provide a robust system to experimentally model and quantify the impact of protein aggregation on cell fitness.

Keywords: Amyloid fibrils, Chaperones, Escherichia coli, Inclusion bodies, Protein aggregation


Urban, P., Valle-Delgado, J. J., Moles, E., Marques, J., Diez, C., Fernàndez-Busquets, X., (2012). Nanotools for the delivery of antimicrobial peptides Current Drug Targets 13, (9), 1158-1172

Antimicrobial peptide drugs are increasingly attractive therapeutic agents as their roles in physiopathological processes are being unraveled and because the development of recombinant DNA technology has made them economically affordable in large amounts and high purity. However, due to lack of specificity regarding the target cells, difficulty in attaining them, or reduced half-lives, most current administration methods require high doses. On the other hand, reduced specificity of toxic drugs demands low concentrations to minimize undesirable side-effects, thus incurring the risk of having sublethal amounts which favour the appearance of resistant microbial strains. In this scenario, targeted delivery can fulfill the objective of achieving the intake of total quantities sufficiently low to be innocuous for the patient but that locally are high enough to be lethal for the infectious agent. One of the major advances in recent years has been the size reduction of drug carriers that have dimensions in the nanometer scale and thus are much smaller than -and capable of being internalized by- many types of cells. Among the different types of potential antimicrobial peptide-encapsulating structures reviewed here are liposomes, dendritic polymers, solid core nanoparticles, carbon nanotubes, and DNA cages. These nanoparticulate systems can be functionalized with a plethora of biomolecules providing specificity of binding to particular cell types or locations; as examples of these targeting elements we will present antibodies, DNA aptamers, cell-penetrating peptides, and carbohydrates. Multifunctional Trojan horse-like nanovessels can be engineered by choosing the adequate peptide content, encapsulating structure, and targeting moiety for each particular application.

Keywords: Antibodies, Aptamers, Dendrimers, Liposomes, Nanomedicine, Nanoparticles, Nanovectors, Targeting


Baccar, Z.M., Caballero, D., Eritja, R., Errachid, A., (2012). Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences Electrochimica Acta 74, 123-129

DNA testing requires the development of sensitive and fast devices to measure the presence of nucleic acid sequences by DNA hybridization. In this paper, a simple and label-free DNA-biosensor has been investigated based on the detection of DNA hybridization on layered double hydroxide (LDH) nanomaterials with special emphasis on targeting long single stranded DNA sequences. First, the immobilization of a 20 bases long DNA probe on a thin layer of Mg2AlCO3 and Mg3AlCO3 LDH was studied. Then, DNA hybridization reaction was detected by means of Electrochemical Impedance Spectroscopy. The resulting biosensor showed a high sensitivity for the detection of 80 bases long DNA complementary sequences. The dynamic range was 18–270 ng/ml with a detection limit lower than 1.8 ng/ml.

Keywords: DNA-biosensor, Nanomaterials, Layered double hydroxide, Self-assembly


Kuphal, M., Mills, C.A., Korri-Youssoufi, H., Samitier, J., (2012). Polymer-based technology platform for robust electrochemical sensing using gold microelectrodes Sensors and Actuators B: Chemical 161, (1), 279-284

Rapid and inexpensive development of electrochemical sensors with good exploitation potential may be produced using a polymer as a substrate material. However, fabrication of polymer-based sensors is challenging. Using photolithography and etching of gold-coated poly(ethylene-2,6-naphthalate) (PEN), we have succeeded in fabricating disk-shaped and interdigitated microelectrodes (uEs). The electrodes have an excellent adhesion to the polymer and are encapsulated using a novel room-temperature process, applicable for low-cost, high-throughput fabrication. The PEN surface has been characterized in respect of wettability, surface energy and surface roughness. Finally, the electrodes give stable and reproducible electrochemical impedance spectroscopy and cyclic voltammetry responses, using the redox couple ferrocyanide and ruthenium hexamine. The results demonstrate the robustness and functionality of the polymer-based sensor platform with minimum feature sizes of 6 um.

Keywords: Poly(ethylene naphthalate), Photolithography, Microelectrodes, Interdigitated electrodes, Electrochemical characterization, Electrochemical sensor


Rosa Hernández, M., Urbán, P., Casals, E., Estelrich, J., Escolar, G., Galán, A. M., (2012). Liposomes bearing fibrinogen could potentially interfere with platelet interaction and procoagulant activity International Journal of Nanomedicine 7, 2339-2347

Background: The contribution of fibrinogen (FBN) to hemostasis acting on platelet aggregation and clot formation is well established. It has been suggested that FBN-coated liposomes could be useful in restoring hemostasis. In the present study, we evaluated the modifications induced by multilamellar raw liposomes (MLV) or fibrinogen-coated liposomes (MLV-FBN) on hemostatic parameters. Materials and methods: Different experimental settings using whole blood or thrombocytopenic blood were used. Thromboelastometry, aggregation studies, platelet function analyzer (PFA-100®) tests and studies under flow conditions were applied to detect the effect of MLVFBN on hemostatic parameters. Results: The presence of MLV-FBN in whole blood modified its viscoelastic properties, prolonging clot formation time (CFT) (226.5 ± 26.1 mm versus 124.1 ± 9.4 mm; P, 0.01) but reducing clot firmness (45.4 ± 1.8 mm versus 35.5 ± 2.3 mm; P, 0.05). Under thrombocytopenic conditions, FIBTEM analysis revealed that MLV-FBN shortened clotting time (CT) compared to MLV (153.3 ± 2.8 s versus 128.0 ± 4.6 s; P, 0.05). Addition of either liposome decreased fibrin formation on the subendothelium (MLV 8.1% ± 4.7% and MLV-FBN 0.8% ± 0.5% versus control 36.4% ± 6.7%; P, 0.01), whereas only MLV-FBN significantly reduced fibrin deposition in thrombocytopenic blood (14.4% ± 6.3% versus control 34.5% ± 5.2%; P, 0.05). MLV-FBN inhibited aggregation induced by arachidonic acid (52.1% ± 8.1% versus 88.0% ± 2.1% in control; P, 0.01) and ristocetin (40.3% ± 8.8% versus 94.3% ± 1.1%; P, 0.005), but it did not modify closure times in PFA-100® studies. In perfusion experiments using whole blood, MLV and MLV-FBN decreased the covered surface (13.25% ± 2.4% and 9.85% ± 2.41%, respectively, versus control 22.0% ± 2.0%; P, 0.01) and the percentage of large aggregates (8.4% ± 2.3% and 3.3% ± 1.01%, respectively, versus control 14.6% ± 1.8%; P, 0.01). Conclusion: Our results reveal that, in addition to the main contribution of fibrinogen to hemostasis, MLV-FBN inhibits platelet-mediated hemostasis and coagulation mechanisms.

Keywords: Fibrin, Fibrinogen, Hemostasis, Liposomes, Procoagulant activity, Thrombocytopenia


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Veeregowda, D. H., van der Mei, H. C., de Vries, J., Rutland, M. W., Valle-Delgado, J. J., Sharma, P. K., Busscher, H. J., (2012). Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation Clinical Oral Investigations 16, (5), 1499-1506

Objectives: Toothbrushing, though aimed at biofilm removal, also affects the lubricative function of adsorbed salivary conditioning films (SCFs). Different modes of brushing (manual, powered, rotary-oscillatory or sonically driven) influence the SCF in different ways. Our objectives were to compare boundary lubrication of SCFs after different modes of brushing and to explain their lubrication on the basis of their roughness, dehydrated layer thickness, and degree of glycosylation. A pilot study was performed to relate in vitro lubrication with mouthfeel in human volunteers. Materials and methods: Coefficient of friction (COF) on 16-h-old SCFs after manual, rotary-oscillatory, and sonically driven brushing was measured using colloidal probe atomic force microscopy (AFM). AFM was also used to assess the roughness of SCFs prior to and after brushing. Dehydrated layer thicknesses and glycosylation of the SCFs were determined using X-ray photoelectron spectroscopy. Mouthfeel after manual and both modes of powered brushing were evaluated employing a split-mouth design. Results: Compared with unbrushed and manually or sonically driven brushed SCFs, powered rotary-oscillatory brushing leads to deglycosylation of the SCF, loss of thickness, and a rougher film. Concurrently, the COF of a powered rotary-oscillatory brushed SCF increased. Volunteers reported a slightly preferred mouthfeel after sonic brushing as compared to powered rotating-oscillating brushing. Conclusion: Deglycosylation and roughness increase the COF on SCFs. Clinical relevance: Powered rotary-oscillatory brushing can deglycosylate a SCF, leading to a rougher film surface as compared with manual and sonic brushing, decreasing the lubricative function of the SCF. This is consistent with clinical mouthfeel evaluation after different modes of brushing.

Keywords: AFM, Friction, Glycosylation, Salivary conditioning film, Toothbrushing, XPS


Gallach, D., Torres-Costa, V., García-Pelayo, L., Climent-Font, A., Martín-Palma, R. J., Barreiros-Das-Santos, M., Sporer, C., Samitier, J., Manso, M., (2012). Properties of bilayer contacts to porous silicon Applied Physics A: Materials Science and Processing 107, (2), 293-300

The aim of the present work is the growth by PVD techniques and ulterior characterization of electrical contacts to columnar porous silicon (PSi) as an approach to reliable PSi sensor devices. Contacts consist of a NiCr (40:60) and Au bilayer on the PSi surface deposited by magnetron sputtering. These structures show a good adhesion to the rough surface of columnar PSi. The morphology of these electrical contacts is characterized by electron microscopy and their crystalline structure by X-ray diffraction. Compositional profiles are determined by Rutherford backscattering spectroscopy and energy dispersive X-ray spectroscopy, which demonstrate that the infiltration of NiCr into the PSi is at the origin of the metallic thin film adhesion improvement. I-V characteristics and impedance spectroscopy measurements show that this configuration provides rectifying electrical contacts to PSi, for which a simple equivalent circuit based on one resistor and two capacitors can be modeled. These results further support the use of PSi electrical structures for sensing purposes.


Azevedo, S., Diéguez, L., Carvalho, P., Carneiro, J. O., Teixeira, V., Martínez, E., Samitier, J., (2012). Deposition of ITO thin films onto PMMA substrates for waveguide based biosensing devices Journal of Nano Research 17, 75-83

Biosensors' research filed has clearly been changing towards the production of multifunctional and innovative design concepts to address the needs related with sensitivity and selectivity of the devices. More recently, waveguide biosensors, that do not require any label procedure to detect biomolecules adsorbed on its surface, have been pointed out as one of the most promising technologies for the production of biosensing devices with enhanced performance. Moreover the combination of optical and electrochemical measurements through the integration of transparent and conducting oxides in the multilayer structures can greatly enhance the biosensors' sensitivity. Furthermore, the integration of polymeric substrates may bring powerful advantages in comparison with silicon based ones. The biosensors will have a lower production costs being possible to disposable them after use ("one use sensor chip"). This research work represents a preliminary study about the influence of substrate temperature on the overall properties of ITO thin films deposited by DC magnetron sputtering onto 0,5 mm thick PMMA sheets.

Keywords: ITO thin films, PMMA sheets, Waveguide biosensing devices, Biosensing devices, Conducting oxides, Dc magnetron sputtering, Electrochemical measurements, Enhanced performance, Innovative design, ITO thin films, Multilayer structures, Overall properties, PMMA sheets, Polymeric substrate, Production cost, Sensor chips, Silicon-based, Substrate temperature, Biosensors, Deposition, Design, Film preparation, Optical multilayers, Thin films, Vapor deposition, Waveguides, Substrates


Colomer-Farrarons, J., Miribel-Català , P., Juanola-Feliu, E., Samitier, J., (2012). A proof-of-concept of a multi-harvesting power source in a low-voltage CMOS technology IEEE Computer Society 2012 IEEE International Conference on Green Computing and Communications, Conference on Internet of Things, and Conference on Cyber, Physical and Social Computing , IEEE (Besancon, France) , 655-659

This paper presents a view of the state of the art in the field of energy harvesting solutions focused on discrete to integrated solutions in the range of low-power generation, from a few microwatts to several nanowatts. A view of commercial solutions to the new trends in new self-powered smart sensors operating without the use of any kind of battery will be presented. A specific solution developed in our laboratory will be used as an example of application.

Keywords: Electric power generation, Energy scavenging, Low-power electronics, Power conditioning


Valle-Delgado, J. J., Molina-Bolívar, J. A., Galisteo-González, F., Gálvez-Ruiz, M. J., (2011). Evidence of hydration forces between proteins Current Opinion in Colloid and Interface Science 16, (6), 572-578

Proteins are fundamental molecules in biology that are also involved in a wide range of industrial and biotechnological processes. Consequently, many works in the literature have been devoted to the study of protein-protein and protein-surface interactions in aqueous solutions. The results have been usually interpreted within the frame of the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for colloidal systems. However, against the DLVO predictions, striking evidence of repulsive forces between proteins at high salt concentrations has been observed in different works based on the analysis of the second virial coefficient or on the direct measurement of protein interaction with an atomic force microscope. Hydration forces due to the adsorption of hydrated cations onto the negatively charged protein surfaces have been invoked to rationalize this anomalous repulsion. The hydration forces between proteins provide protein-covered particles with a non-DLVO colloidal stability at high salt concentrations, as different studies in the literature has proven. This review summarizes the most relevant results published so far on the presence of hydration forces between proteins and protein-coated colloidal particles.

Keywords: Colloidal particles, Colloidal stability, Hydrated ions, Hydration forces, Proteins


Urban, Patricia, Estelrich, Joan, Cortés, Alfred, Fernàndez-Busquets, X., (2011). A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro Journal of Controlled Release 151, (2), 202-211

Current administration methods of antimalarial drugs deliver the free compound in the blood stream, where it can be unspecifically taken up by all cells, and not only by Plasmodium-infected red blood cells (pRBCs). Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of malaria therapy by increasing drug bioavailability and selectivity. Liposome encapsulation has been assayed for the delivery of compounds against murine malaria, but there is a lack of cellular studies on the performance of targeted liposomes in specific cell recognition and on the efficacy of cargo delivery, and very little data on liposome-driven antimalarial drug targeting to human-infecting parasites. We have used fluorescence microscopy to assess in vitro the efficiency of liposomal nanocarriers for the targeted delivery of their contents to pRBCs. 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs. In less than 90 min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of targeted immunoliposomes. Liposomes not functionalized with antibodies are also specifically directed to pRBCs, although with less affinity than immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2 nM, >= 10 times below its IC50 in solution, cleared 26.7 ± 1.8% of pRBCs when delivered inside targeted immunoliposomes.

Keywords: Antimalarial chemotherapy, Chloroquine, Half-antibodies, Immunoliposomes, Malaria, Nanomedicine


Ivon Rodriguez-Villarreal, Angeles, Tarn, Mark D., Madden, Leigh A., Lutz, Julia B., Greenman, John, Samitier, Josep, Pamme, Nicole, (2011). Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup Lab on a Chip 11, (7), 1240-1248

The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells.

Keywords: Feeble magnetic substances, On-chip, Blood-cells, Microfluidic device, Separation, Field, Levitation, Magnetophoresis, Fractionation, Nanoparticles


Sánchez-Martín, M. J., Urbán, P., Pujol, M., Haro, I., Alsina, M. A., Busquets, M. A., (2011). Biophysical investigations of GBV-C E1 peptides as potential inhibitors of HIV-1 fusion peptide ChemPhysChem 12, (15), 2816-2822

Five peptide sequences corresponding to the E1 protein of GBV-C [NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18), and AQLVGELGSLYGPLSVSA (P22)] were synthesized because they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP)-vesicle interaction. In this work the interaction of these peptides with the HIV-1 FP, as well as with membrane models, was analyzed to corroborate their inhibition ability and to understand if the interaction with the fusion peptide takes place in solution or at the membrane level. Several studies were carried out on aggregation and membrane fusion, surface Plasmon resonance, and conformational analysis by circular dichroism. Moreover, in vitro toxicity assays, including cytotoxicity studies in 3T3 fibroblasts and hemolysis assays in human red blood cells, were performed to evaluate if these peptides could be potentially used in anti-HIV-1 therapy. Results show that P10 is not capable of inhibiting membrane fusion caused by HIV-1 and it aggregates liposomes and fuses membranes, thus we decided to discard it for futures studies. P18 and P22 do not inhibit membrane fusion, but they inhibit the ability of HIV-1 FP to form pores in bilayers, thus we have not discarded them yet. P7 and P8 were selected as the best candidates for future studies because they are capable of inhibiting membrane fusion and the interaction of HIV-1 FP with bilayers. Therefore, these peptides could be potentially used in future anti-HIV-1 research. Part of the gang: Liposomes are deposited on a surface plasmon resonance chip (see AFM image of the chip) to observe the interaction of peptides corresponding to the E1 envelop protein of the hepatitis G virus with membranes to show how they reduce the interaction of the HIV-1 fusion peptide.

Keywords: HIV-1 fusion protein, Liposomes, Membranes, Peptides, Viruses


Castillo-Fernandez, Oscar, Salieb-Beugelaar, Georgette B., van Nieuwkasteele, Jan W., Bomer, Johan G., Arundell, Martin, Samitier, Josep, van den Berg, Albert, Eijkel, Jan C. T., (2011). Electrokinetic DNA transport in 20 nm-high nanoslits: Evidence for movement through a wall-adsorbed polymer nanogel Electrophoresis 32, (18), 2402-2409

The electrokinetic transport behavior of lambda-DNA (48 kbp) in 20 nm-high fused-silica nanoslits in the presence of short-chain PVP is investigated. Mobility and video data show a number of phenomena that are typical of DNA transport through gels or polymer solutions, thus indicative of rigid migration obstacles in the DNA pathway. Calculations show that a several nanometer thin layer of wall-adsorbed PVP ('nano-gel') can provide such a rigid obstacle matrix to the DNA. Such ultrathin wall-adsorbed polymer layers represent a new type of matrix for electrokinetic DNA separation.

Keywords: λ-DNA, Biased reptation, Caterpillar movement, Nanoslits, Pathways, PVP


Mir, Monica, Martinez-Rodriguez, Sergio, Castillo-Fernandez, Oscar, Homs-Corbera, Antoni, Samitier, Josep, (2011). Electrokinetic techniques applied to electrochemical DNA biosensors Electrophoresis 32, (8), 811-821

Electrokinetic techniques are contact-free methods currently used in many applications, where precise handling of biological entities, such as cells, bacteria or nucleic acids, is needed. These techniques are based on the effect of electric fields on molecules suspended in a fluid, and the corresponding induced motion, which can be tuned according to some known physical laws and observed behaviours. Increasing interest on the application of such strategies in order to improve the detection of DNA strands has appeared during the recent decades. Classical electrode-based DNA electrochemical biosensors with combined electrokinetic techniques present the advantage of being able to improve the working electrode's bioactive part during their fabrication and also the hybridization yield during the sensor detection phase. This can be achieved by selectively manipulating, driving and directing the molecules towards the electrodes increasing the speed and yield of the floating DNA strands attached to them. On the other hand, this technique can be also used in order to make biosensors reusable, or reconfigurable, by simply inverting its working principle and pulling DNA strands away from the electrodes. Finally, the combination of these techniques with nanostructures, such as nanopores or nanochannels, has recently boosted the appearance of new types of electrochemical sensors that exploit the time-varying position of DNA strands in order to continuously scan these molecules and to detect their properties. This review gives an insight into the main forces involved in DNA electrokinetics and discusses the state of the art and uses of these techniques in recent years.

Keywords: Electrochemical DNA biosensors, Lab-on-a-chip (LOC), Micro-total analysis systems (mu TAS), Nanopore


Urban, Patricia, Estelrich, Joan, Adeva, Alberto, Cortes, Alfred, Fernàndez-Busquets, X., (2011). Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors Nanoscale Research Letters 6, (1), 620

Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with immunoliposomes encapsulating 4 nM chloroquine and bearing an estimated 250 BM1234 units. The nanovector prototype described here can be a valuable platform amenable to modification and improvement with the objective of designing a nanostructure adequate to enter the preclinical pipeline as a new antimalarial therapy.

Keywords: Plasmodium falciparum, Antimalarial drug, Nanovector, Immuno-liposomes


Barthelmebs, L., Jonca, J., Hayat, A., Prieto-Simon, B., Marty, J. L., (2011). Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine Food Control 22, (5), 737-743

Ochratoxin A (OTA) is one of the most important mycotoxins because of its high toxicity to both humans and animals and its occurrence in a number of basic foods and agro-products. The need to develop high-performing methods for OTA analysis able to improve the traditional ones is evident. In this work, through in vitro SELEX (Systematic Evolution of Ligands by EXponential enrichment) two aptamers, designated H8 and H12 were produced that bind with nanomolar affinity with Ochratoxin A (OTA). Two strategies were investigated by using an indirect and a direct competitive Enzyme-Linked Aptamer Assay (ELAA) and were compared to the classical competitive Enzyme-Linked Immunosorbent Assay (ELISA) for the determination of OTA in spiked red wine samples. The limit of detection attained (1 ng/mL), the midpoint value obtained (5 ng/mL) and the analysis time needed (125 min) for the real sample analysis validate the direct competitive ELAA as useful screening tool for routine use in the control of OTA level in wine.

Keywords: Competitive Enzyme-Linked Aptamer Assay (ELAA), DNA aptamer, Ochratoxin A, SELEX, Wine analysis


Rodriguez-Segui, Santiago A., Pons Ximenez, Jose Ignacio, Sevilla, Lidia, Ruiz, Ana, Colpo, Pascal, Rossi, Francois, Martinez, Elena, Samitier, Josep, (2011). Quantification of protein immobilization on substrates for cellular microarray applications Journal of Biomedical Materials Research - Part A 98A, (2), 245-256

Cellular microarray developments and its applications are the next step after DNA and protein microarrays. The choice of the surface chemistry of the substrates used for the implementation of this technique, that must favor proper protein immobilization while avoiding cell adhesion on the nonspotted areas, presents a complex challenge. This is a key issue since usually the best nonfouling surfaces are also the ones that retain immobilized the smallest amounts of printed protein. To quantitatively assess the amount of protein immobilization, in this study several combinations of fluorescently labeled fibronectin (Fn*) and streptavidin (SA*) were microspotted, with and without glycerol addition in the printing buffer, on several substrates suitable for cellular microarrays. The substrates assayed included chemically activated surfaces as well as Poly ethylene oxide (PEO) films that are nonfouling in solution but accept adhesion of proteins in dry conditions. The results showed that the spotted Fn* was retained by all the surfaces, although the PEO surface did show smaller amounts of immobilization. The SA*, on the other hand, was only retained by the chemically activated surfaces. The inclusion of glycerol in the printing buffer significantly reduced the immobilization of both proteins. The results presented in this article provide quantitative evidence of the convenience of using a chemically activated surface to immobilize proteins relevant for cellular microarray applications, particularly when ECM proteins are cospotted with smaller factors which are more difficult to be retained by the surfaces.

Keywords: Protein immobilization, Quantification, Microarray, Substrate, Surface chemistry


Fernandez, Javier G., Samitier, Josep, Mills, Christopher A., (2011). Simultaneous biochemical and topographical patterning on curved surfaces using biocompatible sacrificial molds Journal of Biomedical Materials Research - Part A 98A, (2), 229-234

A method for the simultaneous (bio)chemical and topographical patterning of enclosed structures in poly(dimethyl siloxane) (PDMS) is presented. The simultaneous chemical and topography transference uses a water-soluble chitosan sacrificial mold to impart a predefined pattern with micrometric accuracy to a PDMS replica. The method is compared to conventional soft-lithography techniques on planar surfaces. Its functionality is demonstrated by the transference of streptavidin directly to the surface of the three-dimensional PDMS structures as well as indirectly using streptavidin-loaded latex nanoparticles. The streptavidin immobilized on the PDMS is tested for bioactivity by coupling with fluorescently labeled biotin. This proves that the streptavidin is immobilized on the PDMS surface, not in the bulk of the polymer, and is therefore accessible for use as signaling/binding element in micro and bioengineering. The use of a biocompatible polymer and processes enables the technique to be used for the chemical patterning of tissue constructions.

Keywords: Biotechnology, Chitosan, Microfabrication, MEMs, Soft lithography


Tahirbegi, I. B., Mir, M., (2011). Slit-wave model for band structures in solid state physics Modern Physics Letters B 25, (3), 151-161

The reason behind the entire development in silicon technology was band models in solid state physics. However, the theories postulated in order to give response to this phenomenon do not explain all kinds of materials. In a bid to overcome this limitation, we approach the problem from another point of view. In this work, the wave properties of the electrons from the external orbitals of the atoms and its diffraction patterns through the lattice structure of the material have been used to explain the band structure of metals, semiconductor and insulators. In order to probe this hypothesis, a simulation has been used and according to the relation between the lattice constant and the atomic diameter, the splitting of the bands have been observed for different kind of materials, showing a strong correlation between the simulation and the experimental results.

Keywords: Electrical band structure, Band gap, Fraunhofer diffraction, Semiconductor, Insulator


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Catala, P., Samitier, J., Valls-Pasola, J., (2011). Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis Proceedings of the SPIE - The International Society for Optical Engineering VLSI Circuits and Systems V (ed. -----), SPIE - The International Society for Optical Engineering, USA (Prague, Czech Republic) 8067, 80670P

It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and commercialization.

Keywords: Biomedical equipment, Diseases, Nanotechnology


del Moral Zamora, B., Colomer, J., Mir, M., Homs, A., Miribel, P., Samitier, J., (2011). Combined impedance and dielectrophoresis portable device for point-of-care analysis Proceedings SPIE Bioelectronics, Biomedical, and Bioinspired Systems V; and Nanotechnology V , SPIE (Prague, Czech Republic) 8068, 80680T (19)

In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.


Punter-Villagrasa, J., Colomer-Farrarons, J., Miribel-Catala, P., Puig-Vidal, M., Samitier, J., (2011). Discrete to full custom ASIC solutions for bioelectronic applications Proceedings of the SPIE - The International Society for Optical Engineering VLSI Circuits and Systems V , SPIE - The International Society for Optical Engineering (Prague, Czech Republic) 8067, 80670Q

This paper presents a first approach on multi-pathogen detection system for portable point-of-care applications on discrete electronics field. The main interest is focused on the development of custom built electronic solutions for bioelectronics applications, from discrete devices to ASICS solutions.

Keywords: Application specific integrated circuits, Biomedical electronics, Biosensors


Colomer-Farrarons, Jordi , Miribel-Català, Pedro Luís, Samitier, Josep , (2011). Low-voltage µpower CMOS subcutaneous biomedical implantable device for true/false applications Biomedical Engineering IASTED International Conference Biomedical Engineering (Biomed 2011) (ed. Baumgartner, C.), ACTA Press (Innsbruck, Austria) Biomedical Engineering, 424-428

Mir, M., (2011). Aptamers: The new biorecognition element for proteomic biosensing Biochemistry Research Updates (ed. Baginski, Simon J.), Nova Science Publishers, Inc (Hauppauge, USA) , -----

Aptamers are single stranded artificial nucleic acid ligands that can be generated against almost any kind of target, such as ions, metabolites aminoacids, drugs, toxins, proteins or whole cells. They are isolated from combinatorial libraries of synthetic nucleic acids by an iterative process of adsorption, recovery and amplification, know as SELEX (Systematic Evolution of Ligands by EXponential enrichment) process. Aptamers, the nucleic acid equivalent to antibodies, are easy to synthesise, is not required the use of animals for its synthesis, for this reason it can be developed again toxins and small molecules that do not produce immune response in animals and can be tuned for affinity in closer to assay conditions permitting recognition out of the physiological state. So, aptamers posses numerous advantages that make them preferred candidates as biorecognition elements. In view of the advantages and simple structure of aptamers, they have been used in a wide range of applications such as therapeutics, diagnosis, chromatography, environmental detection, among other.

Keywords: Aptamers, Biosensors, Protein recognition


Colomer-Farrarons, Jordi, Miribel-Català, Pere LI., Rodríguez-Villarreal, A. Ivón, Samitier, Josep, (2011). Portable bio-devices: Design of electrochemical instruments from miniaturized to implantable devices New perspectives in biosensors technology and applications (ed. Andrea Serra, Pier), InTech (Rijeka, Croatia) Biomedical Engineering, 373-400

A biosensor is a detecting device that combines a transducer with a biologically sensitive and selective component. Biosensors can measure compounds present in the environment, chemical processes, food and human body at low cost if compared with traditional analytical techniques. This book covers a wide range of aspects and issues related to biosensor technology, bringing together researchers from 12 different countries. The book consists of 20 chapters written by 69 authors and divided in three sections: Biosensors Technology and Materials, Biosensors for Health and Biosensors for Environment and Biosecurity.

Keywords: Bio-Devices, Electrochemical Instruments, Miniaturized Devices, Nanobiosensor


Martinez, Elena, Samitier, Josep, (2011). Soft lithography and variants Generating micro- and nanopatterns on polymeric materials (ed. del Campo, Aranzazu , Arzt, Eduard), Wiley-VCH Verlag GmbH&Co (Weinheim) , 57-66

Prieto-Simón, B., Campà s, M., Marty, J. L., (2010). Electrochemical aptamer-based sensors Bioanalytical Reviews 1, (2), 141-157

The valuable properties of aptamers, such as specificity, sensitivity, stability, cost-effectiveness and design flexibility, have favoured their use as biorecognition elements in biosensor development. These synthetic affinity probes can be developed for almost any target molecule, covering a wide range of applications in fields such as clinical diagnosis and therapy, environmental monitoring and food control. The combination of aptamers with high-performance electrochemical transducers, with their inherent high sensitivities, fast response times and simple equipment, has already provided several electrochemical aptamer-based sensors. Moreover, the small size and versatility of aptamers allow efficient immobilisations in high-density monolayers, an important feature towards miniaturisation and integration of compact electrochemical devices. This review describes the state-of-the-art of electrochemical aptamer-based sensors, entering into the details of the different strategies and types of electrochemical transduction and also considering their advantages when applied to the analysis of complex matrices.

Keywords: Aptabeacon, Aptamer, Biosensor, Electrochemical detection, Redox label


Valle-Delgado, J. J., Alfonso-Prieto, M., de Groot, N. S., Ventura, S., Samitier, J., Rovira, C., Fernàndez-Busquets, X., (2010). Modulation of A beta(42) fibrillogenesis by glycosaminoglycan structure FASEB Journal 24, (11), 4250-4261

The role of amyloid beta (A beta) peptide in the onset and progression of Alzheimer's disease is linked to the presence of soluble A beta species. Sulfated glycosaminoglycans (GAGs) promote A beta fibrillogenesis and reduce the toxicity of the peptide in neuronal cell cultures, but a satisfactory rationale to explain these effects at the molecular level has not been provided yet. We have used circular dichroism, Fourier transform infrared spectroscopy, fluorescence microscopy and spectroscopy, protease digestion, atomic force microscopy (AFM), and molecular dynamics simulations to characterize the association of the 42-residue fragment A beta(42) with sulfated GAGs, hyaluronan, chitosan, and poly(vinyl sulfate) (PVS). Our results indicate that the formation of stable A beta(42) fibrils is promoted by polymeric GAGs with negative charges placed in-frame with the 4.8-angstrom separating A beta(42) monomers within protofibrillar beta-sheets. Incubation of A beta(42) with excess sulfated GAGs and hyaluronan increased amyloid fibril content and resistance to proteolysis 2- to 5-fold, whereas in the presence of the cationic polysaccharide chitosan, A beta(42) fibrillar species were reduced by 25% and sensitivity to protease degradation increased similar to 3-fold. Fibrils of intermediate stability were obtained in the presence of PVS, an anionic polymer with more tightly packed charges than GAGs. Important structural differences between A beta(42) fibrils induced by PVS and A beta(42) fibrils obtained in the presence of GAGs and hyaluronan were observed by AFM, whereas mainly precursor protofibrillar forms were detected after incubation with chitosan. Computed binding energies per peptide from -11.2 to -13.5 kcal/mol were calculated for GAGs and PVS, whereas a significantly lower value of -7.4 kcal/mol was obtained for chitosan. Taken together, our data suggest a simple and straightforward mechanism to explain the role of GAGs as enhancers of the formation of insoluble A beta(42) fibrils trapping soluble toxic forms.

Keywords: Alzheimer's disease, Amyloid fibril structure, Fibrillogenesis enhancers and inhibitors, Polysaccharides


Sisquella, X., de Pourcq, K., Alguacil, J., Robles, J., Sanz, F., Anselmetti, D., Imperial, S., Fernàndez-Busquets, X., (2010). A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials FASEB Journal 24, (11), 4203-4217

An important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate. The data obtained in this pioneering SMFS analysis of a bisubstrate enzymatic reaction illustrate the substrate sequentiality in DXS activity and allow for the calculation of catalytic parameters with single-molecule resolution. The DXS inhibitor fluoropyruvate has been detected in our SMFS competition experiments at a concentration of 10 mu M, improving by 2 orders of magnitude the sensitivity of conventional enzyme activity assays. The binding of DXS to pyruvate is a 2-step process with dissociation constants of k(off) = 6.1 x 10(-4) +/- 7.5 x 10(-3) and 1.3 x 10(-2) +/- 1.0 x 10(-2) s(-1), and reaction lengths of x(beta) = 3.98 +/- 0.33 and 0.52 +/- 0.23 angstrom. These results constitute the first quantitative report on the use of nanotechnology for the biodiscovery of new antimalarial enzyme inhibitors and open the field for the identification of compounds represented only by a few dozens of molecules in the sensor chamber.

Keywords: Malaria, 2-C-methyl-D-erythritol-4-phosphate pathway, 1-deoxy-D-xylulose 5-phosphate synthase, Pyruvate, Glyceraldehyde-3-phosphate, Drug discovery


Rodriguez-Villarreal, A. I., Arundell, M., Carmona, M., Samitier, J., (2010). High flow rate microfluidic device for blood plasma separation using a range of temperatures Lab on a Chip 10, (2), 211-219

A hybrid microfluidic device that uses hydrodynamic forces to separate human plasma from blood cells has been designed and fabricated and the advantageous effects of temperature and flow rates are investigated in this paper. The blood separating device includes an inlet which is reduced by approximately 20 times to a small constrictor channel, which then opens out to a larger output channel with a small lateral channel for the collection of plasma. When tested the device separated plasma from whole blood using a wide range of flow rates, between 50 mu l min(-1) and 200 mu l min(-1), at the higher flow rates injected by hand and at temperatures ranging from 23 degrees C to 50 degrees C, the latter resulting in an increase in the cell-free layer of up to 250%. It was also tested continuously using between 5% and 40% erythrocytes in plasma and whole blood without blocking the channels or hemolysis of the cells. The mean percentage of plasma collected after separation was 3.47% from a sample of 1 ml. The percentage of cells removed from the plasma varied depending on the flow rate used, but at 37 degrees C ranged between 95.4 +/- 1% and 97.05 +/- 05% at 100 mu l min(-1) and 200 mu l min(-1), respectively. The change in temperature also had an effect on the number of cells removed from the plasma which was between 93.5 +/- 0.65% and 97.01 +/- 0.3% at 26.9 degrees C and 37 degrees C, respectively, using a flow rate of 100 mu l min(-1). Due to its ability to operate in a wide range of conditions, it is envisaged that this device can be used in in vitro 'lab on a chip' applications, as well as a hand-held point of care (POC) device.

Keywords: On-a-chip, Cells, Viscosity, Membrane


Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking


Fernàndez-Busquets, X., Ponce, J., Bravo, R., Arimon, M., Martianez, T., Gella, A., Cladera, J., Durany, N., (2010). Modulation of amyloid beta peptide(1-42) cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate Current Alzheimer Research 7, (5), 428-438

One mechanism leading to neurodegeneration during Alzheimer's Disease (AD) is amyloid beta peptide (A beta)-induced neurotoxicity. Among the factors proposed to potentiate A beta toxicity is its covalent modification through carbohydrate-derived advanced glycation endproducts (AGEs). Other experimental evidence, though, indicates that certain polymeric carbohydrates like the glycosaminoglycan (GAG) chains found in proteoglycan molecules attenuate the neurotoxic effect of A beta in primary neuronal cultures. Pretreatment of the 42-residue A beta fragment (A beta(1-42)) with the ubiquitous brain carbohydrates, glucose, fructose, and the GAG chondroitin sulfate B (CSB) inhibits A beta beta(1-42)-induced apoptosis and reduces the peptide neurotoxicity on neuroblastoma cells, a cytoprotective effect that is partially reverted by AGE inhibitors such as pyridoxamine and L-carnosine. Thioflavin T fluorescence measurements indicate that at concentrations close to physiological, only CSB promotes the formation of A beta amyloid fibril structure. Atomic force microscopy imaging and Western blot analysis suggest that glucose favours the formation of globular oligomeric structures derived from aggregated species. Our data suggest that at short times carbohydrates reduce A beta(1-42) toxicity through different mechanisms both dependent and independent of AGE formation.

Keywords: Alzheimer's disease, Advanced glycation endproducts, Amyloid fibrils, Amyloid beta peptide, Apoptosis, Carbohydrates, Glycosaminoglycans


Comelles, J., Estevez, M., Martinez, E., Samitier, J., (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion Nanomedicine: Nanotechnology Biology and Medicine 6, (1), 44-51

Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. However, novel applications in the biosensor field require materials to be compatible with cell growth and at the same time be suitable for technological processing. Technological polymers are key materials in the fabrication of disposable parts and other sensing elements. As such, it is essential to characterize the surface properties of technological polymers, especially after processing and sterilization. It is also important to understand how technological polymers affect cell behavior when in contact with polymer materials. Therefore, the aim of this research was to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly (methyl methacrylate), polystyrene, and poly(dimethylsiloxane). Glass was used as the control material. From the Clinical Editor: Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. The aim of this research is to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly(methylmethacrylate) (PMMA), polystyrene (PS), and poly(dimethylsiloxane) (PDMS).

Keywords: Thin-films, Poly(methyl methacrylate), Osteoblast adhesion, Electron-microscopy, Fibronectin, Polystyrene, Oly(dimethylsiloxane), Biocompatibility, Hydroxyapatite, Behavior


Estevez, M., Fernandez-Ulibarri, I., Martinez, E., Egea, G., Samitier, J., (2010). Changes in the internal organization of the cell by microstructured substrates Soft Matter 6, (3), 582-590

Surface features at the micro and nanometre scale have been shown to influence and even determine cell behaviour and cytoskeleton organization through direct mechanotransductive pathways. Much less is known about the function and internal distribution of organelles of cells grown on topographically modified surfaces. In this study, the nanoimprint lithography technique was used to manufacture poly(methyl methacrylate) (PMMA) sheets with a variety of features in the micrometre size range. Normal rat kidney (NRK) fibroblasts were cultured on these substrates and immunofluorescence staining assays were performed to visualize cell adhesion, the organization of the cytoskeleton and the morphology and subcellular positioning of the Golgi complex. The results show that different topographic features at the micrometric scale induce different rearrangements of the cell cytoskeleton, which in turn alter the positioning and morphology of the Golgi complex. Microposts and microholes alter the mechanical stability of the Golgi complex by modifying the actin cytoskeleton organization leading to the compaction of the organelle. These findings prove that physically modified surfaces are a valuable tool with which to study the dynamics of cell cytoskeleton organization and its subsequent repercussion on internal cell organization and associated function.

Keywords: Actin stress fibers, Golgi-complex, Focal adhesions, Cytoskeletal organization, Osteoblast adhesion, Mammalian-cells, Micron-scale, Nanoscale, Dynamics, Rho


Lagunas, A., Comelles, J., Martinez, E., Samitier, J., (2010). Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin streptavidin interaction for biological applications Langmuir 26, (17), 14154-14161

This article describes a simple method for the construction of a universal surface chemical gradient platform based on the biotin streptavidin model. In this approach, surface chemical gradients were prepared in poly(methyl methacrylate) (PM MA), a biocompatible polymer, by a controlled hydrolysis procedure. The physicochemical properties of the resulting modified surfaces were extensively characterized. Chemical analysis carried out via time-of-flight secondary ion mass spectrometry (ToRSIMS) and X-ray photoelectron spectroscopy (XPS) showed the formation of a smooth, highly controllable carboxylic acid gradient of increasing concentration along the sample surface. Atomic force microscopy (AFM) and contact angle (CA) results indicate that, in contrast with most of the chemical gradient methods published in the literature, the chemical modification of the polymer surface barely affects its physical properties. The introduction of carboxylic acid functionality along the surface was then used for biomolecule anchoring. For this purpose, the surface was activated and derivatized first with biotin and finally with streptavidin (SA V) in a directed orientation fashion. The SAV gradient was qualitatively assessed by fluorescence microscopy analysis and quantified by surface plasmon resonance (SPR) in order to establish a quantitative relationship between SAV surface densities and the surface location. The usefulness of the fabrication method described for biological applications was tested by immobilizing biotinylated bradykinin onto the SAV gradient. This proof-of-concept application shows the effectiveness of the concentration range of the gradient because the effects of bradykinin on cell morphology were observed to increase gradually with increasing drug concentrations. The intrinsic characteristics of the fabricated gradient platform (absence of physicochemical modifications other than those due to the biomolecules included) allow us to attribute cell behavior unequivocally to the biomolecule surface density changes.

Keywords: Wettability gradient, Polyethylene surface, Combinatorial, Immobilization, Biomaterials, Fabrication, Deposition, Bradykinin, Monolayers, Discharge


Gallego, I., Oncins, G., Sisquella, X., Fernàndez-Busquets, X., Daban, J. R., (2010). Nanotribology results show that DNA forms a mechanically resistant 2D network in metaphase chromatin plates Biophysical Journal 99, (12), 3951-3958

In a previous study, we found that metaphase chromosomes are formed by thin plates, and here we have applied atomic force microscopy (AFM) and friction force measurements at the nanoscale (nanotribology) to analyze the properties of these planar structures in aqueous media at room temperature. Our results show that high concentrations of NaCl and EDTA and extensive digestion with protease and nuclease enzymes cause plate denaturation. Nanotribology studies show that native plates under structuring conditions (5 mM Mg2+) have a relatively high friction coefficient ( ≈ 0.3), which is markedly reduced when high concentrations of NaCl or EDTA are added ( ≈ 0.1). This lubricant effect can be interpreted considering the electrostatic repulsion between DNA phosphate groups and the AFM tip. Protease digestion increases the friction coefficient ( ≈ 0.5), but the highest friction is observed when DNA is cleaved by micrococcal nuclease ( ≈ 0.9), indicating that DNA is the main structural element of plates. Whereas nuclease-digested plates are irreversibly damaged after the friction measurement, native plates can absorb kinetic energy from the AFM tip without suffering any damage. These results suggest that plates are formed by a flexible and mechanically resistant two-dimensional network which allows the safe storage of DNA during mitosis.

Keywords: -----


Harder, A., Walhorn, V., Dierks, T., Fernàndez-Busquets, X., Anselmetti, D., (2010). Single-molecule force spectroscopy of cartilage aggrecan self-adhesion Biophysical Journal 99, (10), 3498-3504

We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of I-p = 0.31 +/- 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of tau = 7.9 +/- 4.9 s and a reaction bond length of x(beta) = 0.31 +/- 0.08 nm. Whereas the x(beta)-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.

Keywords: Bovine nasal cartilage, Articular-cartilage, Sinorhizobium-meliloti, Proteoglycan, Microscopy, DNA, Macromolecules, Binding, Protein, Glycosaminoglycans


Sabaté, R., Espargaró, A., de Groot, N. S., Valle-Delgado, J. J., Fernàndez-Busquets, X., Ventura, S., (2010). The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils Journal of Molecular Biology 404, (2), 337-352

The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.

Keywords: Amyloid formation, Islet amyloid polypeptide, Protein aggregation, Protein sequence, Retro proteins


Darwish-, N., Caballero, D., Moreno, M., Errachid, A., Samitier, J., (2010). Multi-analytic grating coupler biosensor for differential binding analysis Sensors and Actuators B: Chemical 144, (2), 413-417

In this paper, a multiple-channel extension of a dual-grating Coupler biosensor is presented as a Solution for the problem of resolving different selectivities, Usual when heterogeneous samples are analyzed. Several differently functionalized channels can perform quantitative analysis of competiting recognition events, Suppress shifts due to buffer changes and even monitorize drifts coming from the light Source. Here, the multiple-channel approach is developed and proven for a four-channel configuration, providing a resolution limit of 10(-5) Refractive index Units (RIU) and with an a potentially Unlimited scalability. Finally, a differential HSA recognition event is monitored, at both an IgG functionalized channel and at a blocked one.

Keywords: Optical grating coupler, Multi-channel biorecognition, On-chip reference


de Oliveira, I. A. M., Vocanson, F., Uttaro, J. P., Asfari, Z., Mills, C. A., Samitier, J., Errachid, A., (2010). Characterization of a self-assembled monolayer based on a calix[4]crown-5 derivate: fabrication of a chemical sensor sensitive to calcium Journal of Nanoscience and Nanotechnology 10, (1), 413-420

The synthesis and self-assembled monolayer (SAM) formation of a calix[4]crown-5 derivative are reported. Several techniques, including electrochemistry, atomic force microscopy (AFM), Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle measurements have been applied to characterise the monolayer film designed for chemical sensor applications. The recognition properties of this SAM for metal cations has been investigated using impedance spectroscopy (IS) showing an electrochemical response proportional to calcium ion concentration in the range from 10(-7) M to 10(-2) M. This response is related to microscopic changes at the gold surface induced by selective binding by the immobilised calixarene.

Keywords: Calixarenes, Self assembled monolayer, Micro-contact printing, Atomic force microscopy, Impedance spectroscopy


Caballero, D., Villanueva, G., Plaza, J. A., Mills, C. A., Samitier, J., Errachid, A., (2010). Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques Journal of Nanoscience and Nanotechnology 10, (1), 497-501

The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

Keywords: Atomic-Force Microscope, Carbon nanotube tips, Probes, Roughness, Cells, Microfabrication, Calibration, Surfaces


Sanmarti, M., Iavicoli, P., Pajot-Augy, E., Gomila, G., Samitier, J., (2010). Human olfactory receptors immobilization on a mixed self assembled monolayer for the development of a bioelectronic nose Procedia Engineering (EUROSENSOR XXIV CONFERENCE) 24th Eurosensor Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science (Linz, Austria) 5, 786-789

The present work focuses on the development of an immunosensing surface to build a portable olfactory system for the detection of complex mixture of odorants. Homogeneous cell derived vesicles expressing the olfactory receptors were produced and immobilized with efficiency onto a gold substrate through an optimized surface functionalization method.

Keywords: Bioelectronic noses, Biosensors, Nanoproteoliposomes, Nanosomes, Olfactory receptors, SAMs


Illa, X., Rodriguez-Trujillo, R., Ordeig, O., De Malsche, W., Homs-Corbera, A., Gardeniers, H., Desmet, G., Kutter, J. P., Samitier, J., Romano-Rodríguez, A., (2010). Simultaneous impedance and fluorescence detection of proteins in a cyclo olefin polymer chip containing a column with an ordered pillar array with integrated gold microelectrodes MicroTAS 2010 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences , UoG (Gorningen, The Netherlands) 2, 1280-1282

In this work, we report the detection of proteins by means of simultaneous fluorescence and impedance measurements in a cyclo olefin polymer (COP) chip containing an ordered pillar array column, used for reversed-phase liquid chromatography, with integrated microband gold electrodes at the end of the channel.

Keywords: Cyclo olefin polymer, Gold microelectrodes, Impedance, Pillar array, Protein detection


Fernàndez-Busquets, X., Körnig, A., Bucior, I., Burger, M. M., Anselmetti, D., (2009). Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion Molecular Biology and Evolution 26, (11), 2551-2561

The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 /2.27). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.

Keywords: Calcium, Cambrian explosion, Carbohydrates, Cell adhesion, Origin of Metazoa, Sponges


Guix, F. X., Ill-Raga, G., Bravo, R., Nakaya, T., de Fabritiis, G., Coma, M., Miscione, G. P., Villa-Freixa, J., Suzuki, T., Fernàndez-Busquets, X., Valverde, M. A., de Strooper, B., Munoz, F. J., (2009). Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation Brain 132, (5), 1335-1345

Alzheimer's disease neuropathology is characterized by neuronal death, amyloid beta-peptide deposits and neurofibrillary tangles composed of paired helical filaments of tau protein. Although crucial for our understanding of the pathogenesis of Alzheimer's disease, the molecular mechanisms linking amyloid beta-peptide and paired helical filaments remain unknown. Here, we show that amyloid beta-peptide-induced nitro-oxidative damage promotes the nitrotyrosination of the glycolytic enzyme triosephosphate isomerase in human neuroblastoma cells. Consequently, nitro-triosephosphate isomerase was found to be present in brain slides from double transgenic mice overexpressing human amyloid precursor protein and presenilin 1, and in Alzheimer's disease patients. Higher levels of nitro-triosephosphate isomerase (P < 0.05) were detected, by Western blot, in immunoprecipitates from hippocampus (9 individuals) and frontal cortex (13 individuals) of Alzheimer's disease patients, compared with healthy subjects (4 and 9 individuals, respectively). Triosephosphate isomerase nitrotyrosination decreases the glycolytic flow. Moreover, during its isomerase activity, it triggers the production of the highly neurotoxic methylglyoxal (n = 4; P < 0.05). The bioinformatics simulation of the nitration of tyrosines 164 and 208, close to the catalytic centre, fits with a reduced isomerase activity. Human embryonic kidney (HEK) cells overexpressing double mutant triosephosphate isomerase (Tyr164 and 208 by Phe164 and 208) showed high methylglyoxal production. This finding correlates with the widespread glycation immunostaining in Alzheimer's disease cortex and hippocampus from double transgenic mice overexpressing amyloid precursor protein and presenilin 1. Furthermore, nitro-triosephosphate isomerase formed large beta-sheet aggregates in vitro and in vivo, as demonstrated by turbidometric analysis and electron microscopy. Transmission electron microscopy (TEM) and atomic force microscopy studies have demonstrated that nitro-triosephosphate isomerase binds tau monomers and induces tau aggregation to form paired helical filaments, the characteristic intracellular hallmark of Alzheimer's disease brains. Our results link oxidative stress, the main etiopathogenic mechanism in sporadic Alzheimer's disease, via the production of peroxynitrite and nitrotyrosination of triosephosphate isomerase, to amyloid beta-peptide-induced toxicity and tau pathology.

Keywords: Alzheimer's disease, Amyloid β-peptide, Tau protein, Triosephosphate isomerase, Peroxynitrite


Tort, N., Salvador, J. P., Eritja, R., Poch, M., Martinez, E., Samitier, J., Marco, M. P., (2009). Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids Trac-Trends in Analytical Chemistry 28, (6), 718-728

We report a new strategy for immunochemical screening of small organic molecules based on the use of a hapten microarray. Using DNA-directed immobilization strategies, we have been able to convert a DNA chip into a hapten microarray by taking advantage of all the benefits of the structural and electrostatic homogeneous properties of DNA. The hapten microarray uses hapten-oligonucleotide probes instead of proteins, avoiding the limitations of preparing stochiometrically-defined protein-oligonucleotide bioconjugates. As proof of concept, we show here the development of a microarray for analysis of anabolic androgenic steroids. The microchip is able to detect several illegal substances with sufficient detectability to be used as a screening method, according to the regulations of the World Anti-Doping Agency for sport and the European Commision for food safety. The results that we show corroborate the universal possibilities of the DNA chip, and, in this case, they open the way to develop hapten microarrays for the immunochemical analysis of small organic molecules.

Keywords: Anti-doping, DNA chip, DNA-directed immobilization (DDI), Fluorescence, Food safety, Hapten microarray, Immunochemical screening, Proof of concept, Small organic molecule, Steroid


Fernandez, J. G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small 5, (5), 614-620

A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).

Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods


Caballero, D., Samitier, J., Bausells, J., Errachid, A., (2009). Direct patterning of anti-human serum albumin antibodies on aldehyde-terminated silicon nitride surfaces for HSA protein detection Small 5, (13), 1531-1534

Silicon nitride surfaces are modified with a triethoxysilane aldehyde self-assembled monolayer for the direct immobilization of monoclonal antibodies and the detection of human serum albumin proteins, without any activation requirements. Surface modification and the specific recognition interaction between the HSA protein and its associated antibody are studied by fluorescence microscopy and atomic force microscopy.

Keywords: Aldehyde, Human serum albumin, Immunosensors, Microcontact printing, Silicon nitride


Ruiz, A., Mills, C. A., Valsesia, A., Martinez, E., Ceccone, G., Samitier, J., Colpo, P., Rossi, F., (2009). Large-area, nanoimprint-assisted microcontact stripping for the fabrication of microarrays of fouling/nonfouling nanostructures Small 5, (10), 1133-1137

Methods for the accurate positioning of nanometric beads on a substrate have been developed over a number of years, and range from serial atomic force microscopy (AFM)techniques for single-bead positioning to parallel techniques for the positioning of large populations of beads in monolayer or multilayer architectures, typically from a liquid suspension. For example, topographic cues have been used for bead-based protein array production, although in this case, there is a random distribution of beads within the topography. Bead patterning has also been achieved in capillaries using a micromolding in capillaries (MIMIC) technique. Line patterns with micrometer widths are possible with this technique, achieving good multilayer organization. For monolayer bead patterning at micrometer dimensions, electrostatic forces and similar electrostatic assemblies using nanoxerography, as well as patterning by selective chemical functionalization, by transfer of particles from a liquid–liquid interface, and by subtracting top–down processes, are possible.

Keywords: Microcontact stripping, Nanostructures, Poly(acrylic acid), Polystyrene, Surface patterning


Pla, D., Sischka, A., Albericio, F., Alvarez, M., Fernàndez-Busquets, X., Anselmetti, D., (2009). Optical-tweezers study of topoisomerase inhibition Small 5, (11), 1269-1272

Optical tweezers force-stretching of highly nicked dsDNA, as indicated by the large hysteresis area (black and red curves). Topoisomerase activity is evidenced by a higher level plateau and a complete vanishing of the overstretching hysteresis (green curve), indicating total repair of the DNA nicks. The arrow indicates a drop in the stretching curve resulting from topoisomerase cleavage during the cycle.

Keywords: Atomic force microscopy, DNA, Lamellarin D, Optical tweezers, Topoisomerase


Martinez, E., Lagunas, A., Mills, C. A., Rodriguez-Segui, S., Estevez, M., Oberhansl, S., Comelles, J., Samitier, J., (2009). Stem cell differentiation by functionalized micro- and nanostructured surfaces Nanomedicine 4, (1), 65-82

New fabrication technologies and, in particular, new nanotechnologies have provided biomaterial and biomedical scientists with enormous possibilities when designing customized supports and scaffolds with controlled nanoscale topography and chemistry. The main issue now is how to effectively design these components and choose the appropriate combination of structure and chemistry to tailor towards applications as challenging and complex as stem cell differentiation. Occasionally, an incomplete knowledge of the fundamentals of biological differentiation process has hampered this issue. However, the recent technological advances in creating controlled cellular microenvironments can be seen as a powerful tool for furthering fundamental biology studies. This article reviews the main strategies followed to achieve solutions to this challenge, particularly emphasizing the working hypothesis followed by the authors to elucidate the mechanisms behind the observed effects of structured surfaces on cell behavior.

Keywords: Cell pattering, Differentiation, Microcontact printing, Micropatterning, Microstructure, Nanoimprinting, Nanostructure, Stem cells


Hosta, L., Pla, M., Arbiol, J., Lopez-Iglesias, C., Samitier, J., Cruz, L. J., Kogan, M. J., Albericio, F., (2009). Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity Bioconjugate Chemistry 20, (1), 138-146

Two Cys-containing analogues of the anticancer drug Kahalalide F are synthesized and conjugated to 20 and 40 nm gold nanoparticles (GNPs). The resulting complexes are characterized by different analytical techniques to confirm the attachment of peptide to the GNPs. The self-assembly capacity of a peptide dramatically influences the final ratio number of molecules per nanoparticle, saturating the nanoparticle surface and prompting multilayered capping on the surface. In such way, the nanoparticle could act as a concentrator for the delivery of drugs, thereby increasing bioactivity. The GNP sizes and the conjugation have influence on the biological activities. Kahalalide F analogues conjugated with GNPs are located subcellularly at lysosome-like bodies, which may be related to the action mechanism of Kahalalide F. The results suggest that the selective delivery and activity of Kahalalide F analogues can be improved by conjugating the peptides to GNPs.

Keywords: Electrical detection, Cellular uptake, Drug-delivery, Cancer-cells, Peptide, Size, Surface, Absorption, Scattering, Therapy


Mir, M., Cameron, P. J., Zhong, X., Azzaroni, O., Alvarez, M., Knoll, W., (2009). Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials Talanta 78, (3), 1102-6

This work describes our studies on the molecular design of interfacial architectures suitable for DNA sensing which could resist non-specific binding of nanomaterials commonly used as labels for amplifying biorecognition events. We observed that the non-specific binding of bio-nanomaterials to surface-confined oligonucleotide strands is highly dependent on the characteristics of the interfacial architecture. Thiolated double stranded oligonucleotide arrays assembled on Au surfaces evidence significant fouling in the presence of nanoparticles (NPs) at the nanomolar level. The non-specific interaction between the oligonucleotide strands and the nanomaterials can be sensitively minimized by introducing streptavidin (SAv) as an underlayer conjugated to the DNA arrays. The role of the SAv layer was attributed to the significant hydrophilic repulsion between the SAv-modified surface and the nanomaterials in close proximity to the interface, thus conferring outstanding anti-fouling characteristics to the interfacial architecture. These results provide a simple and straightforward strategy to overcome the limitations introduced by the non-specific binding of labels to achieve reliable detection of DNA-based biorecognition events.

Keywords: DNA/ analysis, Gold, Nanostructures/ chemistry, Oligonucleotide Array Sequence Analysis/ instrumentation, Oligonucleotides/ chemistry, Streptavidin/ chemistry, Sulfhydryl Compounds


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


Gimenez-Oya, V., Villacanas, O., Fernàndez-Busquets, X., Rubio-Martinez, J., Imperial, S., (2009). Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach Journal of Molecular Modeling 15, (8), 997-1007

The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein-protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK-CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.

Keywords: Solvent-mediated interactions, Protein-protein interactions, Molecular dynamics, Drug design, Intensisty-fading MALDI-TOF mass spectrometry


Lopez-Martinez, M. J., Campo, E. M., Caballero, D., Fernandez, E., Errachid, A., Esteve, J., Plaza, J. A., (2009). Versatile micropipette technology based on deep reactive ion etching and anodic bonding for biological applications Journal of Micromechanics and Microengineering 19, (10), 105013 (10 pp.)

A novel, versatile and robust technology to manufacture transparent micropipettes, suitable for biological applications, is presented here. Up to three deep reactive ion etchings have been included in the manufacturing process, providing highly controlled geometry of reservoirs, connection cavities and inlet ports. Etching processes have been used for the definition of chip and reservoir and for nozzle release. Additionally, special design considerations have been developed to facilitate micro-to-macro fluidic connections. Implementation of anodic bonding to seal a glass substrate to the fluidic structure etched on Si, allowed observation of the flow inside the reservoir. Flow tests have been conducted by filling channels with different fluids. Flow was observed under an optical microscope, both during capillary filling and also during pumping. Dispensing has been demonstrated by functionalizing the surface of an AFM cantilever. Mechanical tests performed by piercing live mouse cells with FIB-sharpened micropipettes suggest the design is sturdy for biological piercing applications.

Keywords: -----


Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies Journal of Materials Science: Materials in Medicine 20, (7), 1525-1533

Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.

Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media


Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology 9, (11), 6478-6482

Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.

Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication


Merolli, A., Rocchi, L., Catalano, F., Planell, J., Engel, E., Martinez, E., Sbernardori, M. C., Marceddu, S., Leali, P. T., (2009). In vivo regeneration of rat sciatic nerve in a double-halved stitch-less guide: a pilot-study Microsurgery 29, (4), 310-318

It is about 20 years that tubular nerve guides have been introduced into clinical practice as a reliable alternative to autograft, in gaps not-longer-than 20 mm, bringing the advantage of avoiding donor site sacrifice and morbidity. There are limitations in the application of tubular guides. First, tubular structure in itself makes surgical implantation difficult; second, stitch sutures required to secure the guide may represent a site of unfavorable fibroblastic reaction; third, maximum length and diameter of the guide correlate with the occurrence of a poorer central vascularization of regenerated nerve. We report on the in vivo testing of a new concept of nerve-guide (named NeuroBox) which is double-halved, not-degradable, rigid, and does not require any stitch to be held in place, employing acrylate glue instead. Five male Wistar rats had the new guide implanted in a 4-mm sciatic nerve defect; two guides incorporated a surface constituted of microtrenches aligned longitudinally. Further five rats had the 4-mm gap left without repair. Contralateral intact nerves were used as controls. After 2 months, nerve regeneration occurred in all animals treated by the NeuroBox; fine blood vessels were well represented. There was no regeneration in the un-treated animals. Even if the limited number of animals does not allow to draw definitive conclusions, some result can be highlighted: an easy surgical technique was associated with the box-shaped guide and acrylate glue was easily applied; an adequate intraneural vascularization was found concurrently with the regeneration of the nerve and no adverse fibroblastic proliferation was present.

Keywords: Peripheral-nerve, Polyglycolic acid, Guidance cues, Collagen tube, Median nerve, Repair, Growth, Cyanoacrylate, Complications, Anastomosis


Martinez, E., Engel, E., Planell, J. A., Samitier, J., (2009). Effects of artificial micro- and nano-structured surfaces on cell behaviour Annals of Anatomy-Anatomischer Anzeiger 191, (1), 126-135

Substrate topography, independently of substrate chemistry, has been reported to have significant effects on cell behaviour. Based on the use of fabrication techniques developed by the silicon microtechnology industry, numerous studies can now be found in the literature analyzing cell behaviour as to various micro- and nanofeatures such as lines, wells, holes and more. Most of these works have been found to relate the micro- and nano-sized topographical features with cell. orientation, migration, morphology and proliferation. In recent papers, even the influence of substrate nanotopography on cell gene expression and differentiation has been pointed out. However, despite the large number of papers published on this topic, significant general trends in cell behaviour are difficult to establish due to differences in cell type, substrate material, feature aspect-ratio, feature geometry and parameters measured. This paper intends to compile and review the relevant existing information on the behaviour of cells on micro- and nano-structured artificial substrates and analyze possible general behavioural trends.

Keywords: Microstructure, Topography, Cell behaviour, Cell morphology, Cell orientation


Engel, E., Martinez, E., Mills, C. A., Funes, M., Planell, J. A., Samitier, J., (2009). Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates Annals of Anatomy-Anatomischer Anzeiger 191, (1), 136-144

Recent studies on 2D substrates have revealed the importance of surface properties in affecting cell behaviour. In particular, surface topography appears to influence and direct cell migration. The development of new technologies of hot embossing and micro-imprinting has made it possible to study cell interactions with controlled micro features and to determine how these features can affect cell behaviour. Several studies have been carried out on the effect of microstructures on cell adhesion, cell guidance and cell proliferation. However, there is still a lack of knowledge on how these features affect mesenchymal stem cell differentiation. This study was designed to evaluate whether highly controlled microstructures on PMMA could induce rMSC differentiation into an osteogenic lineage. Structured PMMA was seeded with rMSC and cell number; cell morphology and cell differentiation were evaluated. Results confirm that microstructures not only affect cell proliferation and alignment but also have a synergistic effect with osteogenic medium on rMSC differentiation into mature osteoblasts.

Keywords: Mesenchymal stem cells, Osteoblasts, Topography, Microstructures


Gustavsson, J., Zine, N., Vocanson, F., Engel, E., Planell, J., Bausells, J., Samitier, J., Errachid, A., (2009). Characterization of potassium-selective field effect transistors based on 1,3-(di-4-oxabutanol)-calix[4]arene-crown-5 as ionophore Sensor Letters 7, (5), 795-800

The ionophore 1,3-(di-4-oxabutanol)-calix[4]arene-crown-5 has been synthesized and used in order to develop a plasticized poly(vinyl-chloride) membrane for potassium ion detection using ion-selective field-effect transistors (ISFETs). The composition of the polymeric membrane was optimized with respect to the plasticizer being used, with the best response obtained using bis(2ethylhexyl)sebacate. The developed MEMFETs exhibit a good linear response of 52.4±1.6 mV per decade within the concentration range of 2.0 x 10-4 M to 1.0 x 10-1 M and response time of 30 seconds. The detection limit was determined to be 4 x 10-5 M and also the selectivity coefficients for possible interfering cations/anions were evaluated. The MEMFETs are suitable for use in the pH range of 3-11.

Keywords: Calix[4]arene, ISFET, MEMFET, Potassium


Colomer-Farrarons, J., Miribel-Catala , P., Saiz-Vela, A., Samitier, J., (2009). A 60 uW low-power low-voltage power management unit for a self-powered system based on low-cost piezoelectric powering generators Proceedings of the 35th European Solid-State Circuits Conference. ESSCIRC 2009 35th European Solid-State Circuits Conference. ESSCIRC 2009 (ed. Tsoukalas, D., Papananos, Y.), IEEE (Athens, Greece) , 280-283

This paper presents the architecture of a novel implementation of an integrated self-powered system based on piezoelectric vibrations in a 0.13Îum technology. The electromechanical transduction is performed by using a low-cost commercial piezoelectric, working at low frequencies, with voltages up to 2.5V. The system is conceived as a System In a Package (SiP). The full integrated system is adapted to work with low-voltage and low-power conditions. The full custom power management circuit is used to charge a storage capacitor (super capacitor), from which the stored energy will be used to power, by controlled cycles of discharge operation of a very low power wireless sensor node that could be used in heavy machinery monitoring. Each circuitry block of the power management circuitry is presented and discussed. The simulated studies are fully validated by experimental tests. The experimental consumption of the power management unit is 67μW, approach to the theoretical expected value of 60ÎuW.

Keywords: -----


Colomer-Farrarons, J., Miribel-Catala , P., Rodriguez, I., Samitier, J., (2009). CMOS front-end architecture for in-vivo biomedical implantable devices 35th Annual Conference of IEEE Industrial Electronics (IECON 2009) 35th Annual Conference of IEEE Industrial Electronics (IECON 2009) , IEEE (Porto, Portugal) , 4401-4408

An integrated front-end architecture for In-Vivo detection is presented. The system is conceived to be implanted under the human skin. The powering and communication between this device and an external primary transmitter are based on an inductive link. The presented architecture is oriented to two different approaches, defining a True/False alarm system, based on amperometric or impedance biosensors. The particular case of the amperometric sensor is used to validate the architecture in terms of different integrated modules fabricated in a 0.13μm technology. A potentiostat amplifier has been integrated to control an amperometric biosensor as well as a current sensing method based on a transimpedance amplifier is used to measure the current. It is also introduced the electronics designed for the bio-impedance case.

Keywords: -----


Colomer-Farrarons, J., Miribel-Catala, P. L., Samitier, J., Arundell, M., Rodriguez, I., (2009). Design of a miniaturized electrochemical instrument for in-situ O/sub 2/ monitoring Sensors and Signal Conditioning VLSI Circuits and Systems IV , SPIE (Desdren, Germany) 7363, 73630A

The authors are working toward the design of a device for the detection of oxygen, following a discrete and an integrated instrumentation implementation. The discrete electronics are also used for preliminary analysis, to confirm the validity of the conception of system, and its set-up would be used in the characterization of the integrated device, waiting for the chip fabrication. This paper presents the design of a small and portable potentiostat integrated with electrodes, which is cheap and miniaturized, which can be applied for on-site measurements for the simultaneous detection of O/sub 2/ and temperature in water systems. As a first approach a discrete PCB has been designed based on commercial discrete electronics and specific oxygen sensors. Dissolved oxygen concentration (DO) is an important index of water quality and the ability to measure the oxygen concentration and temperature at different positions and depths would be an important attribute to environmental analysis. Especially, the objective is that the sensor and the electronics can be integrated in a single encapsulated device able to be submerged in environmental water systems and be able to make multiple measurements. For our proposed application a small and portable device is developed, where electronics and sensors are miniaturized and placed in close proximity to each other. This system would be based on the sensors and electronics, forming one module, and connected to a portable notebook to save and analyze the measurements on-line. The key electronics is defined by the potentiostat amplifier, used to fix the voltage between the working (WE) and reference (RE) electrodes following an input voltage (Vin). Vin is a triangular signal, programmed by a LabView/sup c / interface, which is also used to represent the CV transfers. To obtain a smaller and compact solution the potentiostat amplifier has also been integrated defining a full custom ASIC amplifier, which is in progress, looking for a point-of-care device. These circuits have been designed with a 0.13 mu m technology from ST Microelectronics through the CMP-TIMA service.

Keywords: Amplifiers, Application specific integrated circuits, Chemical sensors, Electrodes, Portable instruments, Temperature measurement, Water sources


Barreiros dos Santos, M., Sporer, C., Sanvicens, N., Pascual, N., Errachid, A., Martinez, E., Marco, M. P., Teixeira, V., Samiter, J., (2009). Detection of pathogenic Bacteria by Electrochemical Impedance Spectroscopy: Influence of the immobilization strategies on the sensor performance Procedia Chemistry 23rd Eurosensors Conference (ed. Brugger, J., Briand, D.), Elsevier Science, BV (Lausanne, Switzerland) 1, 1291-1294

Electrochemical impedance spectroscopy (EIS) is applied to detect pathogenic E. coli O157:H7 bacteria via a label free immunoassay-based detection method. Polyclonal anti-E.coli antibodies (PAb) are immobilized onto gold electrodes following two different strategies, via chemical bond formation between antibody amino groups and a carboxylic acid containing self-assembled molecular monolayer (SAM) and alternatively by linking a biotinylated anti-E. coli to Neutravidin on a mixed-SAM. Impedance spectra for sensors of both designs for increasing concentrations of E. coli are recorded in phosphate buffered saline (PBS). The Nyquist plots can be modeled with a Randle equivalent circuit, identifying the charge transfer resistance RCT as the relevant concentration dependent parameter. Sensors fabricated from both designs are able to detect very low concentration of E. coli with limits of detection as low as 10-100 cfu/ml. The influence of the different immobilization protocols on the sensor performance is evaluated in terms of sensitivity, dynamic range and resistance against nonspecific absorption.

Keywords: Bacteria detection, Biosensors, E-coli, Impedance spectroscopy


Colomer, J., Miribel-Catala , P., Saiz-Vela, A., Rodriguez, I., Samitier, J., (2009). A low power CMOS biopotentiostat in a low-voltage 0.13 um digital technology 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) , IEEE (Cancun, Mexico) , 172-175

A biopotentiostat amplifier, for in-vivo applications, has been designed using a low-voltage lowpower technology of 0.13μm@1.2V. The purpose of the designed bio-amplifier is oriented to sense the capacitive variations of electrochemical biosensor experiments at low frequencies. The designed amplifier seeks to function with a very small power consumption and occupies a very small area, compared with other designs, looking for an in-vivo application. It occupies an area of 327μm × 260μm, and has an average power consumption of 51.2 μW. The performance of the bio-amplifier has been simulated and experimentally validated.

Keywords: -----


Rodriguez-Segui, S. A., Bucior, I., Burger, M. M., Errachid, A., Fernàndez-Busquets, X., (2009). Application of the quartz crystal microbalance to the study of multivalent carbohydrate-carbohydrate adhesion Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 782-787

Carbohydrate-carbohydrate interactions in cell adhesion are being increasingly explored as important players in cell-cell and cell-extracellular matrix interactions that are characterized by finelytuned on-off rates. The emerging field of glycomics requires the application of new methodologies to the study of the generally weak and multivalent carbohydrate binding sites. Here we use the quartz crystal microbalance (QCM) for the analysis of the self-binding activity of the g200 glycan, a molecule of marine sponge origin that is responsible for Ca2+-dependent species-specific cell adhesion. The QCM has the advantages over other highly sensitive techniques of having only one of the interacting partners bound to a surface, and of lacking microfluidics circuits prone to be clogged by self-aggregating glycans. Our results show that g200 self-interaction is negligible in the absence of Ca2+. Different association kinetics at low and high Ca2+ concentrations suggest the existence of two different Ca2+ binding sites in g200. Finally, the observation of a non-saturable binding indicates that g200 has more than one self-adhesion site per molecule. This work represents the first report to date using the QCM to study carbohydrate-carbohydrate interactions involved in cell adhesion.

Keywords: Ca2+-dependent binding, Carbohydrate-carbohydrate interaction, Cell adhesion, Proteoglycan, Quartz crystal microbalance, Sponges


Zazoua, A., Kherrat, R., Caballero, D., Errachid, A., Jaffrezic-Renault, N., Bessueille, F., Leonard, D., (2009). Characterisation of a Cr(VI) sensitive polysiloxane membrane by x-ray photoelectron spectrometry and atomic force microscopy Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 995-1000

Cr(VI) sensitive polysiloxane membranes containing tributylphosphate (TBP) or trioctylphosphine oxide (TOPO) were characterized in this study. TBP and TOPO as carriers, have a high selectivity for Cr(VI). The Potentiometric response of EMIS (Electrolyte/Membrane/Insulator/Semiconductor) sensors presents a quasi-nernstian response for Cr2O2-7 exchange. The ion exchange is shown by X-ray photoelectron spectrometry (XPS), the binding energy of the Cr 2p1/2 peak corresponding to Cr(VI) and the atomic composition after exposure to Cr(VI) shows a factor 1.7 higher for silopreneTBP membrane. The conformational topography of both polymeric membranes was characterized by Atomic Force Microscopy (AFM), the exchange of Cr(VI) leading to a heterogeneous topographic state. Adhesion force measurements are also performed to study the properties of adhesion of both selective membranes with a non-functionalized Si AFM tip and with an OTS functionalized one to study the interactions between the tip and the membrane, in liquid before and after the exposure of the membrane to ion chromium. The presence of the ionophores does not practically change the adhesion force compared to pure polysiloxane, showing a good solubility of the ionophore and the orientation of the alkyl chains towards the polysiloxane surface. After the exchange with Cr(VI), the adhesion force decreases drastically due to the hydrophilic character of the surface, complex of Cr(VI) with the P-O groups of both ionophore being oriented towards the surface.

Keywords: AFM, Electrolyte/membrane/insulator/semiconductor structures, Polysiloxane membrane, Xps


Baccar, Z. M., Caballero, D., Zine, N., Jaffrezic-Renault, N., Errachid, A., (2009). Development of urease/layered double hydroxides nanohybrid materials for the urea detection: Synthesis, analytical and catalytic characterizations Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 676-682

We developed new hybrid nanomaterials, urease/LDH (layered double hydroxides), for the urea detection. The LDH that were prepared by co-precipitation in constant pH and in ambient temperature are hydrotalcites (Mg2Al, Mg3Al) and zaccagnaite (Zn2Al and Zn3Al). The immobilization of urease in these various layered hybrid materials is realized by auto-assembly. The structures of hosted matrices were studied by X-ray diffraction, Absorbance Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allowed the characterisation of the urease immobilization and its interactions with LDH chemical groups. The urease was adsorbed and its morphology was conserved in its new environment. Furthermore, the study of catalytic parameters of Urease/LDH biomembranes and of the kinetics reaction of urea hydrolysis shows a good conformation of the enzyme in hydrotalcite matrices and that the affinity is similar to free urease.

Keywords: Ldh hybrid nanomaterials, Surface properties, Urea biosensors, Urease thin films


Diaguez, L., Darwish-, N., Mir, M., Martinez, E., Moreno, M., Samitier, J., (2009). Effect of the refractive index of buffer solutions in evanescent optical biosensors Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 851-855

Evanescent field optical biosensors are label free sensors that measure the variation of the refractive index of the adsorbed layer onto a chip surface and translate this variation into surface concentration of the adsorbed molecule. The evanescent field based techniques depend on a theoretical model of the waveguide to determine the desired parameters of the adsorbed layer. As this layer is not only composed by the biomolecules, but also by some amount of the buffer solution, in this study, we have developed a new calibration method to take into account the refractive index buffer changes. We report a new methodology to characterize each sensor chip before the measurements and we present the refractive indexes of different buffer solutions considering the most common ones used in biosensor applications. This work will set the calibration bases for any optical grating biosensor instrument.

Keywords: -----


Guaus, E., Torrent-Burgues, J., Zine, N., Errachid, A., (2009). Glassy carbon electrode modified with a langmuir-blodgett film of a thiomacrocyclic ionophore for Cu(II) recognition Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 1006-1011

Nanometric films of a thiomacrocyclic ionophore, 4-phenyl-4-sulfide-11(1- oxodecyl)-1,7-dithia-11-aza-4-phosphacyclotetradecane (ThM), have been deposited on the surface of a Glassy Carbon Electrode (GCE) by the Langmuir-Blodgett (LB) technique. The films have been characterised by using AFM. The influence of these modified electrodes (GCE-ThM) on the reduction of Cu(II) ions has been investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS), and its sensor response has been checked. The CV and EIS responses of LB films on GCE indicate that these ThM films are sensitive to Cu(II) ions. The analysis by EIS of the interference of some other cations, as Mg(II) and Co(II), shows that LB films of ThM can be used for specific Cu(II) sensing applications.

Keywords: Cu(II) sensor, Cyclic voltammetry, Electrochemical impedance spectroscopy, Langmuir-blodgett films


Sporer, C., Casal, L., Caballero, D., Samitier, J., Errachid, A., Perez-Garcia, L., (2009). Novel anionophores for biosensor applications: nano characterisation of SAMS based on amphiphilic imidazolium protophanes and cyclophanes on gold surfaces Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 757-764

Here we report on the results of surface deposition of the novel amphiphilic imidazolium heterocyclophanes and protophanes 1, 2, 3 onto gold electrodes by soft lithography and wet chemistry techniques. Depending on the specific functionalization conditions chosen, the surface properties and the pattern composition can vary widely. The formation of aggregates of monolayers or oligolayer structures and of rings with nano dimensioned wall widths has been investigated with Atomic Force Microscopy (AFM), Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Contact angle measurements.

Keywords: Afm, Imidazolium anionophores, Microcontact printing, Tof-sims


Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655

This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.

Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors


Zazoua, A., Morakchi, K., Kherrat, R., Samar, M. H., Errachid, A., Jaffrezic-Renault, N., Boubellout, R., (2008). Electrochemical characterization of an EIS sensor functionalized with a TOPO doped polymeric layer for Cr(VI) detection IRBM 29, (2-3), 187-191

A hexavalent chromium-selective sensor, based on polymeric membranes containing trioctylphosphine oxide (TOPO) deposited on a Si/Sio(2)/Si3N4 structure, has been developed. The ion-sensitivity of TOPO was investigated by capacitance measurements (C-V) and electrochemical impedance spectroscopy. A quasi-nernstian response for Cr2O72- exchange is shown. Selectivity coefficients and detection limits of Cr(VI) in the presence of interfering anions were determined experimentally using the fixed interference method. A detection limit of 10(-5) M of Cr(VI) is obtained even in presence of sulphate and chloride ions.

Keywords: Hexavalent chromium, Trioctylphosphine oxide, EIS, Siloprene membrane, Capacitance-voltage


Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein


Rodriguez-Trujillo, R., Castillo-Fernandez, O., Garrido, M., Arundell, M., Valencia, A., Gomila, G., (2008). High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture Biosensors and Bioelectronics 24, (2), 290-296

This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device. High-speed counting of 20 mu m polystyrene particles and 5 mu m yeast cells with a rate of up to 1000 particles/s has been demonstrated. Two-dimensional focusing conditions have been used in devices with physical cross-sectional areas of 180 mu m x 65 mu m and 100 mu m x 43 mu m, respectively, in which particles resulted undetectable in the absence of focusing. The 2D-focusing conditions have provided, in addition, increased detection sensitivity by a factor of 1.6 as compared to 1 D-focusing conditions.

Keywords: Impedance, Chip, Microfluidics


Morell, M., Bravo, R., Espargaro, A., Sisquella, X., Aviles, F. X., Fernàndez-Busquets, X., Ventura, S., (2008). Inclusion bodies: Specificity in their aggregation process and amyloid-like structure Biochimica et Biophysica Acta - Molecular Cell Research 1783, (10), 1815-1825

The accumulation of aggregated protein in the cell is associated with the pathology of many diseases and constitutes a major concern in protein production. Intracellular aggregates have been traditionally regarded as nonspecific associations of misfolded polypeptides. This view is challenged by studies demonstrating that, in vitro, aggregation often involves specific interactions. However, little is known about the specificity of in vivo protein deposition. Here, we investigate the degree of in vivo co-aggregation between two self-aggregating proteins, A beta A2 amyloid peptide and foot-and-mouth disease virus VP1 capsid protein, in prokaryotic cells. In addition, the ultrastructure of intracellular aggregates is explored to decipher whether amyloid fibrils and intracellular protein inclusions share structural properties. The data indicate that in vivo protein aggregation exhibits a remarkable specificity that depends on the establishment of selective interactions and results in the formation of oligomeric and fibrillar structures displaying amyloid-like properties. These features allow prokaryotic A beta A2 intracellular aggregates to act as effective seeds in the formation of A beta A2 amyloid fibrils. overall, our results suggest that conserved mechanisms underlie protein aggregation in different organisms. They also have important implications for biotechnological and biomedical applications of recombinant polypeptides.

Keywords: Protein aggregation, Inclusion bodies, Conformational diseases, Amyloid fibrils, Protein folding


Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R., Navajas, D., (2008). Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation Biophysical Journal 94, (12), 4984-4995

Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.

Keywords: Cell Line, Cell Nucleus/ physiology, Cell Proliferation, Cell Size, Computer Simulation, Endothelial Cells/ cytology/ physiology, G1 Phase/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Statistics as Topic


Embrechts, A., Feng, C. L., Mills, C. A., Lee, M., Bredebusch, I., Schnekenburger, J., Domschke, W., Vancso, G. J., Schönherr, H., (2008). Inverted microcontact printing on polystyrene-block-poly(tert-butyl acrylate) films: A versatile approach to fabricate structured biointerfaces across the length scales Langmuir 24, (16), 8841-8849

The combination of the recently introduced soft lithographic technique of inverted microcontact printing (i-μCP) and spin-coated films of polystyrene-block-poly(tert-butyl acrylate) (PS690-b-PtBA 1210) as a reactive platform is shown to yield a versatile approach for the facile fabrication of topographically structured and chemically patterned biointerfaces with characteristic spacings and distances that cross many orders of magnitude. The shortcomings of conventional μCP in printing of small features with large spacings, due to the collapse of small or high aspect ratio stamp structures, are circumvented in i-μCP by printing reactants using a featureless elastomeric stamp onto a topographically structured reactive polymer film. Prior to molecular transfer, the substrate-supported PS 690-b-PtBA1210 films were structured by imprint lithography resulting in lateral and vertical feature sizes between >50 μm-150 nm and >1.0 μm-18 nm, respectively. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and water contact angle measurements provided evidence for the absence of surface chemical transformations during the imprinting step. Following the previously established hydrolysis and activation protocol with trifluoroacetic acid and N-hydroxysuccinimide, amino end-functionalized poly(ethylene glycol) (PEG-NH2), as well as bovine serum albumin and fibronectin as model proteins, were successfully transferred by i-μCP and coupled covalently. As shown, i-μCP yields increased PEG coverages and thus improved performance in suppressing nonspecific adsorption of proteins by exploiting the high local concentrations in the micro- and nanocontacts during molecular transfer. The i-μCP strategy provides access to versatile biointerface platforms patterned across the length scales, as shown for guided cancer cell adhesion, which opens the pathway for systematic cell-surface interaction studies.


Issle, J., Pla, M., Martínez, E., Hartmann, U., (2008). Patterning of magnetic nanobeads on surfaces by poly(dimethylsiloxane) stamps Langmuir 24, (3), 888-893

Poly(dimethylsiloxane) (PDMS) stamps are widely used in soft lithographic methods. They are powerful tools for obtaining structures of soft material in the micrometer to nanometer range by printing techniques. In this contribution, a new application of h-PDMS stamps for nanobead deposition is introduced. Magnetite-polysaccharide particles of an average diameter of 150 nm are used. They can be biologically functionalized by attaching various molecular groups. Deposition of these particles on a carrier substrate results in well-reproducible structures. This is achieved by means of PDMS stamps with different patterns using a microfluidic approach on one hand and a printing approach on the other hand. Furthermore, magnetic substrates with particular domain structures have been used. The beads can then be arranged in rather complicated but well-defined geometrical structures along the domain walls. The magnetic interaction considerably increases the adhesion of the beads to the carrier substrate. All involved materials are biocompatible. Thus the setup can be used in cell culture experiments in order to investigate influences of different particle-bound proteins and particle patterns on cell growth and vitality.


de Oliveira, I. A. M., Risco, D., Vocanson, F., Crespo, E., Teixidor, F., Zine, N., Bausells, J., Samitier, J., Errachid, A., (2008). Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester Sensors and Actuators B: Chemical 130, (1), 295-299

Planar sodium-selective potentiometric microelectrodes with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide) ions ([3,3'-Co(1,2-C2B9-H-11)(2)](-))) as solid contact layer between the polymeric sensitive membrane and the platinum substrate have been constructed. The p-tert-butylcalix[4]arene ethyl ester was used as ionophore for sodium recognition. The microelectrode shows a linear response for Na+ concentrations between 3.0 x 10(-6) and 1.0 x 10(-1) M with a Nernstian slope of 58.65 +/- 2 mV per decade and a detection limit of 1.45 x 10(-6) M. The response time was 14 s, and the electrode is suitable for use within the pH range of 3-10.

Keywords: Sodium, Polypyrrole, Calix[4]arene, Solid-state ion selective microelectrode, Potentiometric


Fernandez, J. G., Mills, C. A., Martinez, E., Lopez-Bosque, M. J., Sisquella, X., Errachid, A., Samitier, J., (2008). Micro- and nanostructuring of freestanding, biodegradable, thin sheets of chitosan via soft lithography Journal of Biomedical Materials Research - Part A 85A, (1), 242-247

A technique for imparting micro- and nano-structured topography into the surface of freestanding thin sheets of chitosan is described. Both micro- and nanometric surface structures have been produced using soft lithography. The soft lithography method, based on solvent evaporation, has allowed structures similar to 60 nm tall and similar to 500 X 500 nm(2) to be produced on freestanding similar to 0.5 mm thick sheets of the polymer when cured at 293 K, and structures similar to 400 nm tall and 5 X 5 mu m(2) to be produced when cured at 283 K. Nonstructured chitosan thin sheets (similar to 200 mu m thick) show excellent optical transmission properties in the visible portion of the electromagnetic spectrum. The structured sheets can be used for applications where optical microscopic analysis is required, such as cell interaction experiments and tissue engineering.

Keywords: Chitin/chitosan, Microstructure, Nanotopography, Polymerization, Soft lithography


Guaus, E., Errachid, A., Torrent-Burgues, J., (2008). Voltammetric response of a glassy carbon electrode modified by a Langmuir-Blodgett film of a thiomacrocyclic compound Journal of Electroanalytical Chemistry 614, (1-2), 73-82

A Langmuir-Blodgett (LB) film of a thiomacrocyclic (ThM) compound was deposited on the surface of a glassy carbon electrode (GCE) sheet, from a subphase containing Cu(II) ions. The study of the voltammetric response of this modified GCE when the ThM was bonded to Cu2+, showed that the films had the behaviour of confined species of an electrode surface, and that the current density of the voltammograms increased with the number of LB layers deposited. On the other hand, a LB film of the ThM compound was deposited on the surface of a GCE sheet from a subphase of pure water. When the voltammetric response of the GCE-ThM electrode was studied in a Cu2+-SO42- solution, it was found that a membrane model applies to describe the effect of the LB film on the GCE surface.

Keywords: Modified electrodes, Langmuir-Blodgett films, Cyclic voltammetry, Permeation at LB films, Membrane model of a thin film


Lopez, M. J., Caballero, D., Campo, E. M., Perez-Castillejos, R., Errachid, A., Esteve, J., Plaza, J. A., (2008). Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication Journal of Micromechanics and Microengineering 18, (7), 8

Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.

Keywords: Dip-pen nanolithography, Silicon, Deposition, Microneedles, Delivery, Arrays, Polysilicon, Capillary, Systems, Gene


Cho, S., Castellarnau, M., Samitier, J., Thielecke, H., (2008). Dependence of impedance of embedded single cells on cellular behaviour Sensors 8, (2), 1198-1211

Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour.

Keywords: Frequency-domain, Spectroscopy, Erythrocytes, Biosensor, Membrane, System


Martinez, E., Engel, E., Lopez-Iglesias, C., Mills, C. A., Planell, J. A., Samitier, J., (2008). Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: A study of cell-substrate interactions Micron 39, (2), 111-116

Topographic micro and nanostructures can play an interesting role in cell behaviour when cells are cultured on these kinds of patterned substrates. It is especially relevant to investigate the influence of the nanometric dimensions topographic features on cell morphology, proliferation, migration and differentiation. To this end, some of the most recent fabrication technologies, developed for the microelectronics industry, can be used to produce well-defined micro and nanopatterns on biocompatible polymer substrates. In this work, osteoblast-like cells are grown on poly(methyl methacrylate) substrates patterned by nanoimprint lithography techniques. Examination of the cell-substrate interface can reveal important details about the cell morphology and the distribution of the focal contacts on the substrate surface. For this purpose, a combination of focused ion beam milling and scanning electron microscopy techniques has been used to image the cell-substrate interface. This technique, if applied to samples prepared by freeze-drying methods, allows high-resolution imaging of cross-sections through the cell and the substrate, where the interactions between the nanopatterned substrate, the cell and the extracellular matrix, which are normally hidden by the bulk of the cell, can be studied.

Keywords: Electron microscopy, Interface, Nanotopography, Osteoblast, Adhesion molecule, Cell morphology


Mills, C. A., Fernandez, J. G., Errachid, A., Samitier, J., (2008). The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography Microelectronic Engineering 85, (9), 1897-1901

Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial structures into a polymer with a lower glass transition temperature, namely poly(methyl methacrylate) (PMMA). As a support layer, FEP replaces fragile silicon based supports for the production of freestanding, structured sheets of PMMA, useful, for example, in biomedical applications where transmittance optical microscopy is required. Secondary PEN moulds, produced by imprinting using silicon-based primary moulds, have been used to transfer sub-micrometer tall structures to a freestanding PMMA sheet. Similarly, hole structures, with different dimensions, have been embossed in both sides of a PMMA sheet simultaneously.

Keywords: Polymer engineering, Embossing, Nanoimprint lithography, Biomedical applications


Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine 19, (4), 1839-1850

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties


Renault, N. J., Korri-Youssoufi, H., Kyselovik, J., Auger, V., Errachid, A., Mills, C. A., Strohhöfer, C., Ali, Z., (2008). Impedimetric microanalysis system for deep vein thrombosis point-of-care testing EMBS'08 - "Personalized Healthcare through Technology" 30th Annual International IEEE Engineering in Medicine and Biology Society (EMBS) Conference , IEEE (Vancouver, Canada) , 1856

Deep Vein Thrombosis (DVT) and the associated condition of Pulmonary Embolism (PE) are the most common cause of unexpected death in developed nations. DVT is an internal clot formed in one of the body's deep veins, typically in the leg. If a part of the clot breaks free and moves into the lung, it can lead to pulmonary embolism (PE) which is often fatal. D-dimer is a recognised marker for the diagnosis of thrombus and is routinely used by skilled technical staff as part of an ELISA technique in hospital laboratories. Current D-dimer point-of-care tests are not sufficiently quantitative to allow them to be used to exclude DVT/PE. As a consequence, clinicians need to rely on the use of expensive Doppler ultrasound imaging (DUS), creating additional pressure on national health services. The DUS examination can take several days, during which time heparin is required to be administered to the patient. There is increasing in the development of low cost Lab-on-a-chip systems that will allow chemical and biological processing by non-specialist staff. A low cost, easy to use, portable and quantitative device for DVT/PE would be highly desirable since it would provide reliable diagnosis and aid faster treatment and recovery as well as lower healthcare provider costs.


Rodriguez-Trujillo, R., Castillo-Fernandez, O., Arundell, M., Samitier, J., Gomila, G., (2008). Yeast cells detection in a very fast and highly versatile microfabricated cytometer MicroTAS 2008 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences , Chemical and Biological Microsystems Society (San Diego, USA) , 1888-1890

A novel microfluidic chip able to detect a wide range of different cell sizes at very high rates is reported. The device uses two-dimensional hydrodynamic focusing [1] of the sample (conducting) flow by three non-conducting flows and high-speed differential impedance detection electronics. High-speed counting of 15μm polystyrene particles and 5μm yeast cells with a rate of up to 1000 particles/s has been demonstrated. Using of two-dimensional focusing effect turn out to be essential in a device with very large cross-sectional area (100x43 μm2) in which particles result undetectable in the absence of focusing.

Keywords: Coulter-counter, Impedance, Microfluidics, Polydimethylsiloxane


Zazoua, A., Kherrat, R., Samar, M. H., Errachid, A., Jaffrezic-Renault, N., Bessueille, F., Leonard, D., (2008). Characterization of TBP containing polysiloxane membrane/insulator/semiconductor structures for hexavalent chromium detection Materials Science and Engineering: C-Biomimetic and Supramolecular Systems 5th Maghreb/Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors (MADICA 2006) (ed. -----), Elsevier Science BV (Mahdia, Tunisia) 28, (5-6), 1014-1019

A hexavalent chromium-sensitive EMIS sensor (electrolyte membrane insulator semiconductor sensor) is prepared by deposition of a tributylphosphate (TBP) ionophore-containing siloprene membrane on a Si/SiO2/Si3N4 structure. The developed EMIS sensor was studied by means of impedance spectroscopy, capacitance-voltage, X-ray photoelectron spectrometry and FT-IR spectroscopy. From the flat-band shift of the EMIS structure, the nersntian response to the anionic species Cr2O7- was demonstrated. The linear range of detection is 10(-4) M to 10(-1) M and the detection limit is 10(-5) M. Sulfate and chloride anions are shown not to be interfering whereas carbonate ions present a pK(pot) equal to 0.19.

Keywords: Hexavalent chromium, EMIS sensor, Tributylphosphate, Siloprene membrane


Errachid, A., Mills, C. A., Pla, M., Lopez, M. J., Villanueva, G., Bausells, J., Crespo, E., Teixidor, F., Samitier, J., (2008). Focused ion beam production of nanoelectrode arrays Materials Science & Engineering C 5th Maghreb/Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors (MADICA 2006) (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 777-780

We present a method for the production of nanoelectrodes using focussed ion beam techniques (FIB). The electrodes utilise nanometric holes milled in a silicon nitride based pasivation layer, followed by wet etching of a silicon oxide based pasivation layer, to expose an underlying gold electrode. After functionalisation using a surface assembled monolayer and an electrochemically grown polypyrrole, these gold nanoelectrodes have been tested, via cyclic voltammetry, in the detection of [Fe(CN)(6)](4-/3-) ions. The nanoelectrodes will be used to investigate the electrical properties of nanometric biological specimen.

Keywords: Neutral carrier, Solid contact, Microelectrodes, Immobilization


Casuso, I., Pla, M., Gomila, G., Samitier, J., Minic, J., Persuy, M. A., Salesse, R., Pajot-Augy, E., (2008). Immobilization of olfactory receptors onto gold electrodes for electrical biosensor Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors , Elsevier Science (Mahdia, TUNISIA) 28, (5-6), 686-691

We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 run to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

Keywords: AFM, Adsorption, Odorant, Taste


Castellarnau, M., Zine, N., Bausells, J., Madrid, C., Juarez, A., Samitier, J., Errachid, A., (2008). ISFET-based biosensor to monitor sugar metabolism in bacteria Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors (ed. -----), Elsevier Science (Mahdia, Tunisia) 28, (5-6), 680-685

We report the use of ion-selective field effect transistor devices (ISFETs) with an integrated pseudo-reference electrode for on-line monitoring of bacterial metabolism by monitoring of the pH variation. As a model we tested the ability of Lactobacillus strains to ferment sugars, producing lactic acid, which results in a decrease in pH in the suspension medium. We have tested and compared sugar uptake by L. sakei and a L. curvatus strains. The results obtained show that it is possible to distinguish between both types of Lactobacillus strains through their pattern of ribose uptake. The use of ISFETs represents a non-invasive methodology that can be used to monitor biological activity in a wide variety of systems.

Keywords: Lactobacillus-sakei, Technology, Sensors, System, Growth, Cells, State, Meat


Barhoumi, H., Haddad, R., Maaref, A., Bausells, J., Bessueille, F., Leonard, D., Jaffrezic-Renault, N., Martelet, C., Zine, N., Errachid, A., (2008). Na+-implanted membrane for a capacitive sodium electrolyte-Insulator-Semiconductor microsensors Sensor Letters International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Microelectronics and Microsystems (ed. -----), Amer Scientific Publishers (Lombardy, Italy) 6, (1), 204-208

Ion implanted Insulator-Semiconductor (IS) sensor that specifically detects Na+ ions have been developed using ion implantation technique. Na+ ions were directly implanted with ion energies 30, 45, and 60 keV into the IS (oxidized Si3N4/Si3N4/SiO2/P-Si) structures previously covered with a thin aluminum layer. X-ray photoelectron spectroscopy (XPS) characterization shows that sodium and aluminum ions were implanted into the oxidized Si3N4 insulating layer surface. Their atomic percentage depending on energy, fluence of the implanted ion and of the annealing temperature. The sen sitivity of the ion-implanted IS structure for Na+ and of some interfering (K+, Li+, H+, and NH4+) ions was investigated using high frequency capacitance-voltage measurements. Under optimal i mplantation conditions such as energy, fluence and annealing temperature, the developed sodium microsensor demonstrates quasi-nernstian sensitivity (50 +/- 2 mV/pNa) in the concentration range from 10(-3.7) to 10(-1) M and high lifetime greater than 16 months without any loss of sensitivity.

Keywords: Na+ microsensor, Ion implantation, XPS, C-V measurements


Sabella, C., Faszewski, E., Himic, L., Colpitts, K. M., Kaltenbach, J., Burger, M. M., Fernàndez-Busquets, X., (2007). Cyclosporin A suspends transplantation reactions in the marine sponge Microciona prolifera Journal of Immunology 179, (9), 5927-5935

Sponges are the simplest extant animals but nevertheless possess self-nonself recognition that rivals the specificity of the vertebrate MHC. We have used dissociated cell assays and grafting techniques to study tissue acceptance and rejection in the marine sponge Microciona prolifera. Our data show that allogeneic, but not isogeneic, cell contacts trigger cell death and an increased expression of cell adhesion and apoptosis markers in cells that accumulate in graft interfaces. Experiments investigating the possible existence of immune memory in sponges indicate that faster second set reactions are nonspecific. Among the different cellular types, gray cells have been proposed to be the sponge immunocytes. Fluorescence confocal microscopy results from intact live grafts show the migration of autofluorescent gray cells toward graft contact zones and the inhibition of gray cell movements in the presence of nontoxic concentrations of cyclosporin A. These results suggest that cell motility is an important factor involved in sponge self/nonself recognition. Communication between gray cells in grafted tissues does not require cell contact and is carried by an extracellular diffusible marker. The finding that a commonly used immunosuppressor in human transplantation such as cyclosporin A blocks tissue rejection in marine sponges indicates that the cellular mechanisms for regulating this process in vertebrates might have appeared at the very start of metazoan evolution.


Pla, M., Fernandez, J. G., Mills, C. A., Martinez, E., Samitier, J., (2007). Micro/nanopatterning of proteins via contact printing using high aspect ratio PMMA stamps and NanoImprint apparatus Langmuir 23, (16), 8614-8618

Micro- and nanoscale protein patterns have been produced via a new contact printing method using a nanoimprint lithography apparatus. The main novelty of the technique is the use of poly(methyl methacrylate) (PMMA) instead of the commonly used poly(dimethylsiloxane) (PDMS) stamps. This avoids printing problems due to roof collapse, which limits the usable aspect ratio in microcontact printing to 10:1. The rigidity of the PMMA allows protein patterning using stamps with very high aspect ratios, up to 300 in this case. Conformal contact between the stamp and the substrate is achieved because of the homogeneous pressure applied via the nanoimprint lithography instrument, and it has allowed us to print lines of protein similar to 150 nm wide, at a 400 nm period. This technique, therefore, provides an excellent method for the direct printing of high-density sub-micrometer scale patterns, or, alternatively, micro-/nanopatterns spaced at large distances. The controlled production of these protein patterns is a key factor in biomedical applications such as cell-surface interaction experiments and tissue engineering.

Keywords: Soft lithography, Cell-adhesion, Microstructures, Fabrication, Stability, Patterns


Mills, C. A., Pla, M., Martin, C., Lee, M., Kuphal, M., Sisquella, X., Martinez, E., Errachid, A., Samitier, J., (2007). Structured thin organic active layers and their use in electrochemical biosensors Measurement & Control 40, (3), 88-91

Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics


Jbari, A., Bellarbi, L., Zine, N., Mills, C. A., Samitier, J., Errachid, A., (2007). Multiplexed frequency spectrum analyzer instrumentation for the characterization of multiple QCM-based biosensors C3 - 2007 SENSORCOMM 2007 International Conference on Sensor Technologies and Applications , IEEE (Valencia, Spain) , 436-440

In this contribution, we present novel multiplexed frequency spectrum analyzer instrumentation to extract operational parameters and completely characterize the frequency response of an array of quartz_crystal microbalance sensors. The effectiveness of the proposed instrumentation is proven by experimental measurements over a range of frequencies.


McMurray, A. A., Ali, Z., Kyselovik, J., Mills, C. A., Renault, N. J., Santha, H., Strohhöfer, C., (2007). A novel point of care diagnostic device: Impedimetric detection of a biomarker in whole blood EMBS 2007 29th Annual International Conference of the IEEE - Engineering in Medicine and Biology , IEEE (Lyon, France) , 115-118

There is an unmet medical need for a more reliable and earlier assessment of patients suspected of having a deep vein thrombosis. We describe a novel approach which is developing a highly reliable, accurate, portable and handheld prototype medical diagnostic device to improve radically the speed, accuracy and reliability with which DVT and related blood clotting conditions can be assessed. The device will measure whole blood concentration of D-dimer, a recognized biomarker of increased blood clotting activity, and through innovation in the development of a novel detection, measurement and reporting system, will offer the opportunity to use the test in the point of care setting. The device combines innovation in antibody bio-engineering for high specificity immunoassay-based diagnostics and nano/micro engineered impedimetric analysis electrodes incorporating a biocompatible polymer substrate with development of a disposable microfluidic manifold specifically enabling diagnostics at the point-of-first-contact.


Castellarnau, Marc, Errachid, Abdelhamid, Madrid, Cristina, Juárez, Antonio, Samitier, Josep, (2006). Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli Biophysical Journal 91, (10), 3937-3945

In this study we report on an experimental method based on dielectrophoretic analysis to identify changes in four Escherichia coli isogenic strains that differed exclusively in one mutant allele. The dielectrophoretic properties of wild-type cells were compared to those of hns, hha, and hha hns mutant derivatives. The hns and hha genes code respectively for the global regulators Hha and H-NS. The Hha and H-NS proteins modulate gene expression in Escherichia coli and other Gram negative bacteria. Mutations in either hha or hns genes result in a pleiotropic phenotype. A two-shell prolate ellipsoidal model has been used to fit the experimental data, obtained from dielectrophoresis measurements, and to study the differences in the dielectric properties of the bacterial strains. The experimental results show that the mutant genotype can be predicted from the dielectrophoretic analysis of the corresponding cultures, opening the way to the development of microdevices for specific identification. Therefore, this study shows that dielectrophoresis can be a valuable tool to study bacterial populations which, although apparently homogeneous, may present phenotypic variability.

Keywords: H-NS, Dielectric behaviour, Hemolysin genes, Cells, Separation, Expression, Proteins, HHA, Electrorotation, Polarization


Muñoz, Luis Miguel, Casals, Alícia, Amat, Josep, Puig-Vidal, Manel, Samitier, Josep, (2005). Improved AFM scanning methodology with adaptation to the target shape C3 - Proceedings - IEEE International Conference on Robotics and Automation ICRA 2005 2005 IEEE International Conference on Robotics and Automation , IEEE (Barcelona, Spain) , 1529-1534

This paper presents a manipulation and measurement aid for tasks carried out in micro-nano environments operating with scanning AFM. In teleoperated manipulation or measurement over a given point of the target, where a slow and precise movement is necessary, the developed system increases the accuracy in this point producing a space deformation. In automatic scanning, the adjusted selection of the target, through assisted image segmentation, enables to reduce the working time.

Keywords: Assisted teleoperation, Image segmentation, Micro-nano manipulation, Workspace deformation


Equipment

Nanofabrication and nanomanipulation

  • Automatized microcontact printing system (custom-made)
  • 3D Printing system for microfluidic devices.

Characterization

  • Surface Plasmon Resonance (SPR)
  • Potentiostates
  • Optical Waveguide Lightmode Spectroscope (OWLS)
  • Atomic Force Microscope (AFM)
  • Optical Microscopes (white light/epifluorescence)
  • Electrical Impedance spectroscopy (EIS)
  • Multi-frequency Lock-in Amplifier
  • Sub-femtoamp Remote SourceMeter Instrument

Molecular/cell biology

  • Biological safety cabinet (class II)
  • Microwell plate readers
  • Protein and DNA electrophoresis systems
  • Microincubator Okolab
  • Nanodrop spectrophotometer
  • CO2 incubator for cells
  • Cell culture cabin

Microfluidics

  • High precision syringe pumps
  • Peristaltic pumps

Collaborations

  • Prof. Fernando Albericio
    Institut de Recerca Biomédica (IRB), Barcelona, Spain
  • Dr. José Antonio Andrades
    Universidad de Málaga, Spain
  • Prof. Joan Bausells
    Centro Nacional de Microelectrónica (CNM-CSIC), Barcelona
  • Prof. Albert van den Berg
    University of Twente, The Netherlands
  • Prof. Andre Bernard
    Institut für Mikro- und Nanotechnologie (MNT-NTB), Buchs, Switzerland
  • Prof. H. Börner
    Max Planck Institute of Colloids and Interfaces, Golm, Germany
  • Prof. Josep Maria Canals
    University of Barcelona, Spain
  • Dr. Matthew Dalby
    University of Glasgow, Glasgow, UK
  • Prof. Paolo Dario
    Scuola Superiore Sant’Anna (SSSA), Pontedera, Italy
  • Prof. Ramón Eritja
    Institut de Recerca Biomédica (IRB), Barcelona, Spain
  • Prof. E. Faszewski
    Wheelock College, Boston, USA
  • Prof. G. Fuhr
    FhG Biomedicine, St. Ingbert, Germany
  • Dr. Juan C. Izpisúa
    Centro de Medicina Regenerativa (CMRB), Barcelona, Spain
  • Dr. Nicole Jaffrezic
    Université Claude Bernard Lyon 1, France
  • Dr. Graham Johnson
    Uniscan Instruments Ltd, Buxton, UK
  • Dr. Mª Pilar Marco
    Institute of Chemical and Environmental Research, Barcelona
  • Prof. Jean-Louis Marty
    Université de Perpignan Via Domitia, France
  • Prof. Barbara Mazzolai
    IIT Center for Micro-BioRobotics (CMBR), Pontedera, Italy
  • Dr. Edith Pajot
    Biology of Olfaction and Biosensors group (BOB) at INRA, Jouyen-Josas, France
  • Dr. M. Lluïssa Pérez
    Dept. Farmacología, University of Barcelona, Spain
  • Dr. Hernando del Portillo
    Centro de Investigación en Salud Internacional de Barcelona (CRESIB), Barcelona, Spain
  • Dr. Jaume Reventós
    Hospital Vall d’Hebrón, Barcelona, Spain
  • Prof. L. Reggiani
    Nanotechnology Laboratory, INFM, Lecce, Italy
  • Prof. Daniel Riveline
    Laboratory of Cell Physics ISIS/IGBMC, Strasbourg
  • Prof. M. Sampietro
    Politecnico di Milano, Italy
  • Prof. Molly M. Stevens
    Imperial College, London, UK
  • Dr. Christophe Vieu
    Laboratoire d’analyse et d’architectures des systèmes (LAASCNRS), Toulouse, France
  • Biokit S.A. (Werfen group)
  • Genomica S.A.U. (Zeltia group)
  • Tallers Fiestas S.L.
  • Enantia S.L.
  • Microfluidic ChipShop GmbH

Comments are closed