by Keyword: ammonia
Chen S, Peetroons X, Bakenecker AC, Lezcano F, Aranson IS, Sánchez S, (2024). Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nature Communications 15, 9315
Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration. However, the physical mechanisms underlying the collective motion have yet to be fully elucidated. Our study investigates the formation of enzymatic swarms using experimental analysis and computational modelling. We show that the directional movement of enzymatic nanomotor swarms is due to their solutal buoyancy. We investigate various factors that impact the movement of nanomotor swarms, such as particle concentration, fuel concentration, fuel viscosity, and vertical confinement. We examine the effects of these factors on swarm self-organization to gain a deeper understanding. In addition, the urease catalysis reaction produces ammonia and carbon dioxide, accelerating the directional movement of active swarms in urea compared with passive ones in the same conditions. The numerical analysis agrees with the experimental findings. Our findings are crucial for the potential biomedical applications of enzymatic nanomotor swarms, ranging from enhanced diffusion in bio-fluids and targeted delivery to cancer therapy.
JTD Keywords: Ammonia, Carbon dioxide, Catalysis, Computer simulation, Kinetics, Motion, Nanostructures, Urease, Viscosity
Sans, Jordi, Arnau, Marc, Bosque, Ricard, Turon, Pau, Aleman, Carlos, (2024). Synthesis of urea from CO2 and N2 fixation under mild conditions using polarized hydroxyapatite as a catalyst Sustainable Energy & Fuels 8, 1473-1482
Polarized hydroxyapatite (p-HAp) has been used as a catalyst for the synthesis of urea coupling N-2, CO2 and water under mild reaction conditions when compared to classical nitrogen fixation reactions, such as the Haber-Bosch process. The reaction of 3 bar of N-2 and 3 bar of CO2 under UV illumination at 120 degrees C (for 48 h) results in a urea yield of 1.5 +/- 0.1 mmol per gram of catalyst (g(c)) with a selectivity close to 80%, whereas the reaction is not successful without UV irradiation. However, the addition of small amounts of NO (314 ppm) produces 15.2 +/- 0.6 and 4.6 +/- 0.4 mmol g(c)(-1) with and without UV illumination, respectively, with the selectivity in both cases being close to 100%. As nitrogen fixation without UV irradiation using p-HAp as a catalyst is a challenge, studies with NO have been conducted varying the reaction conditions (time, pressure and temperature). The results suggest a mechanism based on the production of NH4+ through the oxidation of N-2.
JTD Keywords: Carbon dioxide, Carbon,dinitrogen,reduction,nitrogen,ammonia,dioxid, Catalyst selectivity, Condition, Haber-bosch process, Hydroxyapatite, Irradiation, Metabolism, Mild reaction conditions, Nitrogen fixation, Pressure and temperature, Reaction conditions, Time pressures, Time-temperature, Urea, Uv illuminations, Without uv irradiations, ]+ catalyst
Sans, J, Arnau, M, Turon, P, Alemán, C, (2022). Permanently polarized hydroxyapatite, an outstanding catalytic material for carbon and nitrogen fixation Materials Horizons 9, 1566-1576
Permanently polarized hydroxyapatite is a new material with electrical enhanced properties. This review discusses the advances in this material in terms of structure, properties and catalytic activity of green processes.
JTD Keywords: ammonia, bone, copper hydroxyapatite, electrophotosynthesis, nanoparticles, oxidation, phase-transition, reduction, Amino-acids
De Chiara, F, Ferret-Miñana, A, Fernández-Costa, JM, Senni, A, Jalan, R, Ramón-Azcón, J, (2022). Fatty Hepatocytes Induce Skeletal Muscle Atrophy In Vitro: A New 3D Platform to Study the Protective Effect of Albumin in Non-Alcoholic Fatty Liver Biomedicines 10, 958
The liver neutralizes endogenous and exogenous toxins and metabolites, being metabolically interconnected with many organs. Numerous clinical and experimental studies show a strong association between Non-alcoholic fatty liver disease (NAFLD) and loss of skeletal muscle mass known as sarcopenia. Liver transplantation solves the hepatic-related insufficiencies, but it is unable to revert sarcopenia. Knowing the mechanism(s) by which different organs communicate with each other is crucial to improve the drug development that still relies on the two-dimensional models. However, those models fail to mimic the pathological features of the disease. Here, both liver and skeletal muscle cells were encapsulated in gelatin methacryloyl and carboxymethylcellulose to recreate the disease’s phenotype in vitro. The 3D hepatocytes were challenged with non-esterified fatty acids (NEFAs) inducing features of Non-alcoholic fatty liver (NAFL) such as lipid accumulation, metabolic activity impairment and apoptosis. The 3D skeletal muscle tissues incubated with supernatant from fatty hepatocytes displayed loss of maturation and atrophy. This study demonstrates the connection between the liver and the skeletal muscle in NAFL, narrowing down the players for potential treatments. The tool herein presented was employed as a customizable 3D in vitro platform to assess the protective effect of albumin on both hepatocytes and myotubes.
JTD Keywords: 3r, ammonia, cirrhosis, crosstalk, disease, expression, myostatin, nefas, sarcopenia, tissue engineering, 3r, Ammonia, Crosstalk, Nefas, Nuclear factor 4-alpha, Tissue engineering
Narciso, M, Ulldemolins, A, Junior, C, Otero, J, Navajas, D, Farré, R, Gavara, N, Almendros, I, (2022). Novel Decellularization Method for Tissue Slices Frontiers In Bioengineering And Biotechnology 10, 832178
Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies. Copyright © 2022 Narciso, Ulldemolins, Júnior, Otero, Navajas, Farré, Gavara and Almendros.
JTD Keywords: biocompatibility, bioscaffold recellularization, decellularization, extracellular matrix, flow, impact, lung, scaffolds, tissue slices, Ammonia, Bio-scaffolds, Biocompatibility, Biological organs, Bioscaffold recellularization, Cell removal, Cells, Collagen, Cytology, Decellularization, Dna, Dna signals, Elastin, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Glycoproteins, Laminin, Lung, Mammals, Recellularization, Scaffolds (biology), Sodium deoxycholate, Sulfur compounds, Tissue, Tissue slice, Tissue slices
Crona, Mikael, Torrents, Eduard, Rohr, Asmund K., Hofer, Anders, Furrer, Ernst, Tomter, Ane B., Andersson, K. Kristoffer, Sahlin, Margareta, Sjoberg, Britt-Marie, (2011). NrdH-redoxin protein mediates high enzyme activity in manganese-reconstituted ribonucleotide reductase from bacillus anthracis Journal of Biological Chemistry , 286, (38), 33053-33060
Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp. encode both class Ib and class III RNR operons, but the B. anthracis class III operon was reported to encode a pseudogene, and conceivably class Ib RNR is necessary for spore germination and proliferation of B. anthracis upon infection. The class Ib RNR operon in B. anthracis encodes genes for the catalytic NrdE protein, the tyrosyl radical metalloprotein NrdF, and the flavodoxin protein NrdI. The tyrosyl radical in NrdF is stabilized by an adjacent Mn(2)(III) site (Mn-NrdF) formed by the action of the NrdI protein or by a Fe(2)(III) site (Fe-NrdF) formed spontaneously from Fe(2+) and O(2). In this study, we show that the properties of B. anthracis Mn-NrdF and Fe-NrdF are in general similar for interaction with NrdE and NrdI. Intriguingly, the enzyme activity of Mn-NrdF was approximately an order of magnitude higher than that of Fe-NrdF in the presence of the class Ib-specific physiological reductant NrdH, strongly suggesting that the Mn-NrdF form is important in the life cycle of B. anthracis. Whether the Fe-NrdF form only exists in vitro or whether the NrdF protein in B. anthracis is a true cambialistic enzyme that can work with either manganese or iron remains to be established.
JTD Keywords: Escherichia-coli, Corynebacterium-ammoniagenes, Crystal-structure, Cofactor, Cubunit, Growth, Genes
Roca, Ignasi, Torrents, Eduard, Sahlin, Margareta, Gibert, Isidre, Sjoberg, Britt-Marie, (2008). NrdI essentiality for class Ib ribonucleotide reduction in streptococcus pyogenes Journal of Bacteriology , 190, (14), 4849-4858
The Streptococcus pyogenes genome harbors two clusters of class Ib ribonucleotide reductase genes, nrdHEF and nrdF*I*E*, and a second stand-alone nrdI gene, designated nrdI2. We show that both clusters are expressed simultaneously as two independent operons. The NrdEF enzyme is functionally active in vitro, while the NrdE*F* enzyme is not. The NrdF* protein lacks three of the six highly conserved iron-liganding side chains and cannot form a dinuclear iron site or a tyrosyl radical. In vivo, on the other hand, both operons are functional in heterologous complementation in Escherichia coli. The nrdF*I*E* operon requires the presence of the nrdI* gene, and the nrdHEF operon gained activity upon cotranscription of the heterologous nrdI gene from Streptococcus pneumoniae, while neither nrdI* nor nrdI2 from S. pyogenes rendered it active. Our results highlight the essential role of the flavodoxin NrdI protein in vivo, and we suggest that it is needed to reduce met-NrdF, thereby enabling the spontaneous reformation of the tyrosyl radical. The NrdI* flavodoxin may play a more direct role in ribonucleotide reduction by the NrdF*I*E* system. We discuss the possibility that the nrdF*I*E* operon has been horizontally transferred to S. pyogenes from Mycoplasma spp.
JTD Keywords: Group-a streptococcus, Bacillus-subtilis genes, Escherichia-coli, Corynebacterium-ammoniagenes, Mycobacterium-tuberculosis, Expression analysis, Genome sequence, Small-subunit, Salmonella-typhimurium, Iron center