DONATE

Publications

by Keyword: Angiogenesis

Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA, (2022). Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina Developmental Cell 57, 2321-2333.e9

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: activation, angiogenesis, dynamics, flow, forces, image, mechanisms, vinculin, Angiogenesis, Cell polarity, Fluid shear, Mechanobiology, Morphogenesis, Shear stress


López-Canosa, Adrián, Pérez-Amodio, Soledad, Engel, Elisabeth, Castaño, Oscar, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Duch, P, Diaz-Valdivia, N, Ikemori, R, Gabasa, M, Radisky, ES, Arshakyan, M, Gea-Sorli, S, Mateu-Bosch, A, Bragado, P, Carrasco, JL, Mori, H, Ramirez, J, Teixido, C, Reguart, N, Fillat, C, Radisky, DC, Alcaraz, J, (2022). Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma Matrix Biology 111, 207-225

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metal-loproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor micro-environment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarci-noma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interac-tion. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-61/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-61-activated ADC-TAFs is both nec-essary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenu-ated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

JTD Keywords: Angiogenesis, Cancer cells, Cancer-associated fibroblast, Cd63, Expression, Fibrosis, Hepatocellular-carcinoma, Metalloproteinases, Nintedanib, Prognostic-significance, Protein, Smad3, Squamous-cell carcinoma, Tgf-? 1, Tgf-β1, Timp-1, Tissue inhibitor, Tumor microenvironment


Soriente, A, Amodio, SP, Fasolino, I, Raucci, MG, Demitri, C, Engel, E, Ambrosio, L, (2022). ANTI-INFLAMMATORY, PRO-ANGIOGENIC AND OSTEOGENIC PROPERTIES OF CS SCAFFOLD FOR BONE FRACTURE TREATMENT (Abstract 899) Tissue Engineering Part a 28, S253

Several studies are aimed at developing systems based on naturaland biocompatible polymers for bone tissue engineering. Here, weemphasized how the bio-activation of chitosan (CS)-based scaffoldsby organic and inorganic signals is able to promote osteogenesis,angiogenesis and to modulate the inflammation response by usingin vitro models to mimic bone fracture microenvironment. CSscaffolds by using two different approaches based on inorganic andorganic compounds, were bio-activated respectively1. The expres-sion of inflammatory mediators was investigated (TGF-band IL-6).Additionally, to assess the effect of CS scaffold on angiogenesis,CD31 expression, cell adhesion, proliferation, migration and tubeformation by HUVECs were detected. The results highlighted thatinorganic and organic signals promote cell proliferation and differ-entiation without significant differences between the material groups.In particular, scaffolds bio-activated by using inorganic signals(hydroxyapatite nanoparticles) inhibit pro-inflammatory mediator’sproduction (IL-1band IL-6), induce anti-inflammatory cytokinegeneration (IL-10) and reduce nitric monoxide metabolites (nitrites).Conversely, scaffolds bio-activated by using organic signals (BMP-2mimicking peptide) were able to decrease pro-inflammatory markerswithout any effect on anti-inflammatory cytokines levels and on ni-trites. Furthermore, scaffolds promote angiogenesis by increasingcell proliferation, migration and tube formation with best resultsobtained for BMP based-scaffolds. Our results support the conceptthat CS biomaterials may be novel multi-target devices to treat bonerelated inflammation stimulating neo-vascularization of tissue-en-gineered constructs.ACKNOWLEDGEMENTS: The study was supported by OPENLAB. The authors thank Mariarosaria Bonetti for lab technicalsupport & data elaboration and Dr. Roberta Marzella for support toproject management.

JTD Keywords: Angiogenesis, Chitosan/pegda based scaffolds, Osteogenesis


Tura-Ceide O, Smolders VFED, Aventin N, Morén C, Guitart-Mampel M, Blanco I, Piccari L, Osorio J, Rodríguez C, Rigol M, Solanes N, Malandrino A, Kurakula K, Goumans MJ, Quax PHA, Peinado VI, Castellà M, Barberà JA, (2021). Derivation and characterisation of endothelial cells from patients with chronic thromboembolic pulmonary hypertension Scientific Reports 11,

Pulmonary endarterectomy (PEA) resected material offers a unique opportunity to develop an in vitro endothelial cell model of chronic thromboembolic pulmonary hypertension (CTEPH). We aimed to comprehensively analyze the endothelial function, molecular signature, and mitochondrial profile of CTEPH-derived endothelial cells to better understand the pathophysiological mechanisms of endothelial dysfunction behind CTEPH, and to identify potential novel targets for the prevention and treatment of the disease. Isolated cells from specimens obtained at PEA (CTEPH-EC), were characterized based on morphology, phenotype, and functional analyses (in vitro and in vivo tubule formation, proliferation, apoptosis, and migration). Mitochondrial content, morphology, and dynamics, as well as high-resolution respirometry and oxidative stress, were also studied. CTEPH-EC displayed a hyperproliferative phenotype with an increase expression of adhesion molecules and a decreased apoptosis, eNOS activity, migration capacity and reduced angiogenic capacity in vitro and in vivo compared to healthy endothelial cells. CTEPH-EC presented altered mitochondrial dynamics, increased mitochondrial respiration and an unbalanced production of reactive oxygen species and antioxidants. Our study is the foremost comprehensive investigation of CTEPH-EC. Modulation of redox, mitochondrial homeostasis and adhesion molecule overexpression arise as novel targets and biomarkers in CTEPH.

JTD Keywords: angiogenesis, cd31, dysfunction, expression, pathogenesis, thrombus, C-reactive protein


Perez-Amodio, Soledad, Rubio, Nuria, Vila, Olaia F, Navarro-Requena, Claudia, Castano, Oscar, Sanchez-Ferrero, Aitor, Marti-Munoz, Joan, Alsina-Giber, Merce, Blanco, Jeronimo, Engel, Elisabeth, (2021). Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice Advances In Wound Care 10, 301-316

Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a goodin vitrobioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.

JTD Keywords: angiogenesis, bioactive dressings, chronic wounds, Angiogenesis, Bioactive dressings, Bioactive glass, Bioglass, Cells, Chronic wounds, Diabetes, Endothelial growth-factor, Expression, Hydrogel, Induction


Rubi-Sans, G, Cano-Torres, I, Perez-Amodio, S, Blanco-Fernandez, B, Mateos-Timoneda, MA, Engel, E, (2021). Development and Angiogenic Potential of Cell-Derived Microtissues Using Microcarrier-Template Biomedicines 9,

Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher(R) S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.

JTD Keywords: angiogenesis, cell-derived matrix, cultispher® s, microtissue, poly-lactic acid microcarriers, Angiogenesis, Cell-derived matrix, Cultispher (r) s, Microtissue, Poly-lactic acid microcarriers, Rat bone marrow mesenchymal stem cells


Soriente A, Amodio SP, Fasolino I, Raucci MG, Demitri C, Engel E, Ambrosio L, (2021). Chitosan/PEGDA based scaffolds as bioinspired materials to control in vitro angiogenesis Materials Science & Engineering C-Materials For Biological Applications 118,

© 2020 Elsevier B.V. In the current work, our purpose was based on the assessment of bioactive chitosan (CS)/Poly(ethylene glycol) diacrylate (PEGDA) based scaffolds ability to stimulate in vitro angiogenesis process. The bioactivation of the scaffolds was accomplished by using organic (BMP-2 peptide) and inorganic (hydroxyapatite nanoparticles) cues. In particular, the properties of the materials in terms of biological response promotion on human umbilical vein endothelial cells (HUVECs) were studied by using in vitro angiogenesis tests based on cell growth and proliferation. Furthermore, our interest was to examine the scaffolds capability to modulate two important steps involved in angiogenesis process: migration and tube formation of cells. Our data underlined that bioactive signals on CS/PEGDA scaffolds surface induce a desirable effect on angiogenic response concerning angiogenic marker expression (CD-31) and endothelial tissue formation (tube formation). Taken together, the results emphasized the concept that bioactive CS/PEGDA scaffolds may be novel implants for stimulating neovascularization of tissue-engineered constructs in regenerative medicine field.

JTD Keywords: angiogenesis, bmp-2 peptide, chitosan/pegda based scaffolds, human umbilical vein endothelial cells huvecs, Angiogenesis, Bmp-2 peptide, Chitosan/pegda based scaffolds, Human umbilical vein endothelial cells huvecs, Osteogenesis


Sadowska, J. M., Guillem-Marti, J., Ginebra, M. P., (2019). The influence of physicochemical properties of biomimetic hydroxyapatite on the in vitro behavior of endothelial progenitor cells and their interaction with mesenchymal stem cells Advanced Healthcare Materials 8, (2), 1801138

Calcium phosphate (CaP) substrates are successfully used as bone grafts due to their osteogenic properties. However, the influence of the physicochemical features of CaPs in angiogenesis is frequently neglected despite it being a crucial process for bone regeneration. The present work focuses on analyzing the effects of textural parameters of biomimetic calcium deficient hydroxyapatite (CDHA) and sintered beta-tricalcium phosphate (β-TCP), such as specific surface area, surface roughness, and microstructure, on the behavior of rat endothelial progenitor cells (rEPCs) and their crosstalk with rat mesenchymal stem cells (rMSCs). The higher reactivity of CDHA results in low proliferation rates in monocultured and cocultured systems. This effect is especially pronounced for rMSCs alone, and for CDHA with a fine microstructure. In terms of angiogenic and osteogenic gene expressions, the upregulation of particular genes is especially enhanced for needle-like CDHA compared to plate-like CDHA and β-TCP, suggesting the importance not only of the chemistry of the substrate, but also of its textural features. Moreover, the coculture of rEPCs and rMSCs on needle-like CDHA results in early upregulation of osteogenic modulator, i.e., protein deglycase 1 might be a possible cause of overexpression of osteogenic-related genes on the same substrate.

JTD Keywords: Angiogenesis, Calcium phosphates, Cocultures, Osteogenesis


Oliveira, H., Catros, S., Castano, O., Rey, Sylvie, Siadous, R., Clift, D., Marti-Munoz, J., Batista, M., Bareille, R., Planell, J., Engel, E., Amédée, J., (2017). The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation Acta Biomaterialia 54, 377-385

Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3 weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6 weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. Statement of Significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.

JTD Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglasses


Sachot, N., Roguska, A., Planell, J. P., Lewandowska, M., Engel, E., Castaño, O., (2017). Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment International Journal of Nanomedicine 12, 4901-4919

The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration.

JTD Keywords: Angiogenesis, Calcium release, Electrospinning, Fast degradation, Nanofibers, ORMOGLASSES


Oliveira, Hugo, Catros, Sylvain, Boiziau, Claudine, Siadous, Robin, Marti-Munoz, Joan, Bareille, Reine, Rey, Sylvie, Castano, Oscar, Planell, Josep, Amédée, Joëlle, Engel, Elisabeth, (2016). The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment Acta Biomaterialia 29, 435-445

Abstract In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost. As such, more cost effective alternatives are awaited. Here, we demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate ormoglass (CaP) particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. We show that the current approach elicited the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial. As both PLA and CaP are currently accepted for clinical application these off-the-shelf novel membranes have great potential for guided bone regeneration applications. Statement of significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, our group has found that calcium ions released by the degradation of calcium phosphate ormoglasses (CaP) are effective angiogenic promoters. Based on this, in this work we successfully produced hybrid fibrous mats with different contents of CaP nanoparticles and thus with different calcium ion release rates, using an ormoglass – poly(lactic acid) blend approach. We show that these matrices, upon implantation in a subcutaneous site, could elicit the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial, in a CaP dose dependent manner. This off-the-shelf cost effective approach presents great potential to translate to the clinics.

JTD Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglass


Sachot, Nadège, Castano, Oscar, Planell, Josep A., Engel, Elisabeth, (2015). Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 103, (6), 1287–1293

Electrospinning is a method that can be used to efficiently produce scaffolds that mimic the fibrous structure of natural tissue, such as muscle structures or the extracellular matrix of bone. The technique is often used as a way of depositing composites (organic/inorganic materials) to obtain bioactive nanofibers which have the requisite mechanical properties for use in tissue engineering. However, many factors can influence the formation and collection of fibers, including experimental variables such as the parameters of the solution of the electrospun slurry. In this study, we assessed the influence of the polymer concentration, glass content and glass hydrolysis level on the morphology and thickness of fibers produced by electrospinning for a PCL-(Si-Ca-P2) bioactive ormoglass—organically modified glass—blend. Based on previous assays, this combination of materials shows good angiogenic and osteogenic properties, which gives it great potential for use in tissue engineering. The results of our study showed that blend preparation directly affected the features of the resulting fibers, and when the parameters of the blend are precisely controlled, fibers with a regular diameter could be produced fairly easily when 2,2,2-trifluoroethanol was used as a solvent instead of tetrahydrofuran. The diameter of the homogeneous fibers ranged from 360 to 620 nm depending on the experimental conditions used. This demonstrates that experimental optimization of the electrospinning process is crucial in order to obtain a deposit of hybrid nanofibers with a regular shape.

JTD Keywords: Si-based glasses, Ormoglass, Electrospinning, Hybrid materials, Bioactivity, Angiogenesis


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials & Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM, ζ-potential, morphology evaluation by FESEM, proliferation and differentiation analysis, as well as in vivo subcutaneous implantations. Material and biological characterization suggested that compositions of organic/inorganic hybrid materials with a Si content equivalent to 40%, which were also those that released more calcium, were osteogenic. They also showed a greater ability to form blood vessels. These results suggest that Si-based ormoglasses can be considered an efficient tool for calcium release modulation, which could play a key role in the angiogenic promoting process.

JTD Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Vila, O. F., Martino, M. M., Nebuloni, L., Kuhn, G., Pérez-Amodio, S., Müller, R., Hubbell, J. A., Rubio, N., Blanco, J., (2014). Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors Acta Biomaterialia 10, (10), 4377-4389

In this work we have evaluated the capacity of bone morphogenetic protein-2 (BMP-2) and fibrin-binding platelet-derived growth factor-BB (PDGF-BB) to support cell growth and induce bone regeneration using two different imaging technologies to improve the understanding of structural and organizational processes participating in tissue repair. Human mesenchymal stem cells from adipose tissue (hAMSCs) expressing two luciferase genes, one under the control of the cytomegalovirus (CMV) promoter and the other under the control of a tissue-specific promoter (osteocalcin or platelet endothelial cell adhesion molecule), were seeded in fibrin matrices containing BMP-2 and fibrin-binding PDGF-BB, and further implanted intramuscularly or in a mouse calvarial defect. Then, cell growth and bone regeneration were monitored by bioluminescence imaging (BLI) to analyze the evolution of target gene expression, indicative of cell differentiation towards the osteoblastic and endothelial lineages. Non-invasive imaging was supplemented with micro-computed tomography (μCT) to evaluate bone regeneration and high-resolution μCT of vascular casts. Results from BLI showed hAMSC growth during the first week in all cases, followed by a rapid decrease in cell number; as well as an increment of osteocalcin but not PECAM-1 expression 3 weeks after implantation. Results from μCT show that the delivery of BMP-2 and PDGF-BB by fibrin induced the formation of more bone and improves vascularization, resulting in more abundant and thicker vessels, in comparison with controls. Although the inclusion of hAMSCs in the fibrin matrices made no significant difference in any of these parameters, there was a significant increment in the connectivity of the vascular network in defects treated with hAMSCs.

JTD Keywords: Angiogenesis, Bioluminescence imaging, Bone regeneration, Fibrin, Mesenchymal stem cell


Vila, Olaia F., Bagó, Juli R., Navarro, Melba, Alieva, Maria, Aguilar, Elisabeth, Engel, Elisabeth, Planell, Josep, Rubio, Nuria, Blanco, Jerónimo, (2013). Calcium phosphate glass improves angiogenesis capacity of poly(lactic acid) scaffolds and stimulates differentiation of adipose tissue-derived mesenchymal stromal cells to the endothelial lineage Journal of Biomedical Materials Research - Part A , 101A, (4), 932-941

The angiogenic capacity of a new biomaterial composite of poly(lactic acid) and calcium phosphate glass (PLA/CaP) was analyzed by noninvasive bioluminescence imaging (BLI) and histological procedures. Human adipose tissue-derived mesenchymal stromal cells expressing cytomegalovirus (CMV) promoter regulated Photinus pyralis luciferase (hAMSC-PLuc) grew up to 30 times the initial cell load, in vitro, when seeded in PLA/CaP scaffolds, but suffered an initial growth crisis followed by recovery when the scaffolds were subcutaneously implanted in SCID mice. To analyze changes in gene expression, hAMSC-PLuc cells were double labeled with a CMV promoter regulated Renilla reniformis luciferase and a Photinus pyralis luciferase reporter regulated by either the PECAM promoter or a hypoxia response element (HRE) artificial promoter and seeded in PLA/CaP and PLA scaffolds implanted in SCID mice. Analysis by BLI showed that hAMSCs in scaffolds were induced to differentiate to the endothelial lineage and did this faster in PLA/CaP than in PLA scaffolds. Endothelial differentiation correlated with a decrease in the activity of HRE regulated luciferase expression, indicative of a reduction of hypoxia. Histological analysis showed that PLA/CaP scaffolds were colonized by a functional host vascular system. Moreover, colonization by isolectin B4 positive host cells was more effective in PLA/CaP than in PLA scaffolds, corroborating BLI results.

JTD Keywords: Scaffold, Bioluminescence imaging, Cell differentiation, Angiogenesis, Mesenchymal stromal cells


Aguirre, A., Gonzalez, A., Navarro, M., Castano, O., Planell, J. A., Engel, E., (2012). Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis European Cells & Materials , 24, 90-106

Smart biomaterials play a key role when aiming at successful tissue repair by means of regenerative medicine approaches, and are expected to contain chemical as well as mechanical cues that will guide the regenerative process. Recent advances in the understanding of stem cell biology and mechanosensing have shed new light onto the importance of the local microenvironment in determining cell fate. Herein we report the biological properties of a bioactive, biodegradable calcium phosphate glass/polylactic acid composite biomaterial that promotes bone marrow-derived endothelial progenitor cell (EPC) mobilisation, differentiation and angiogenesis through the creation of a controlled bone healing-like microenvironment. The angiogenic response is triggered by biochemical and mechanical cues provided by the composite, which activate two synergistic cell signalling pathways: a biochemical one mediated by the calcium-sensing receptor and a mechanosensitive one regulated by non-muscle myosin II contraction. Together, these signals promote a synergistic response by activating EPCs-mediated VEGF and VEGFR-2 synthesis, which in turn promote progenitor cell homing, differentiation and tubulogenesis. These findings highlight the importance of controlling microenvironmental cues for stem/progenitor cell tissue engineering and offer exciting new therapeutical opportunities for biomaterialbased vascularisation approaches and clinical applications.

JTD Keywords: Calcium phosphate glass composite, Smart biomaterial, Endothelial progenitor cell, Angiogenesis, Mechanosensing, Calcium-sensing receptor


Aguirre, A., Planell, J. A., Engel, E., (2010). Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis Biochemical and Biophysical Research Communications , 400, (2), 284-291

Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

JTD Keywords: Bone marrow, Endothelial progenitor cell, Co-culture, Mesenchymal stem cell, Angiogenesis


Aguirre, A., Gonzalez, A., Planell, J. A., Engel, E., (2010). Extracellular calcium modulates in vitro bone marrow-derived Flk-1(+) CD34(+) progenitor cell chemotaxis and differentiation through a calcium-sensing receptor Biochemical and Biophysical Research Communications , 393, (1), 156-161

Angiogenesis is a complex process regulated by many cell types and a large variety of biochemical signals such as growth factors, transcription factors, oxygen and nutrient diffusion among others. In the present study, we found out that Flk-1(+) CD34(+) progenitor cells (bone marrow resident cells with an important role in angiogenesis) were responsive to changes in extracellular calcium concentration through a membrane bound, G-protein-coupled receptor sensitive to calcium ions related to the calcium-sensing receptor (CaSR). Calcium was able to induce progenitor cell migration in Boyden chamber experiments and tubulogenesis in Matrigel assays. Addition of anti-CaSR antibodies completely blocked the effect, while CaSR agonist Mg2+ produced a similar response to that of calcium. Real time RT-PCR for a wide array of angiogenesis-related genes showed increased expression of endothelial markers and signaling pathways involved in angiogenesis. These results suggest calcium could be a physiological modulator of the bone marrow progenitor cell-mediated angiogenic response.

JTD Keywords: Endothelial progenitor cell, Calcium-sensing receptor, Angiogenesis, Chemotaxis, Calcium, Bone marrow