DONATE

Publications

by Keyword: Epithelium

Fischer NG, Aparicio C, (2022). Junctional epithelium and hemidesmosomes: Tape and rivets for solving the “percutaneous device dilemma” in dental and other permanent implants Bioactive Materials 18, 178-198

The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the “device”/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant – as a model percutaneous device – placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists. © 2022 The Authors

JTD Keywords: amino-acid-sequence, bioinspired surfaces, cell-secreted protein, growth-factor receptor, hemidesmosome, integrin beta-4 subunit, junctional epithelium, keratinocyte-derived chemokine, laminin-binding integrins, marginal bone loss, percutaneous implant, pressure wound therapy, soft-tissue integration, Bioinspired surfaces, Bullous-pemphigoid antigen, Hemidesmosome, Junctional epithelium, Percutaneous device, Percutaneous implant


Pérez-González, Carlos, Ceada, Gerardo, Matejcic, Marija, Trepat, Xavier, (2022). Digesting the mechanobiology of the intestinal epithelium Current Opinion In Genetics & Development 72, 82-90

The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

JTD Keywords: crypt fission, designer matrices, differentiation, growth, gut, migration, model, scaffold, tissue mechanics, Cell migration, Cell proliferation, Ex vivo study, Human tissue, Intestine epithelium, Monolayer culture, Organoid, Review, Stem-cell, Tension, Traction therapy


Nyga, Agata, Muñoz, Jose J., Dercksen, Suze, Fornabaio, Giulia, Uroz, Marina, Trepat, Xavier, Baum, Buzz, Matthews, Helen K., Conte, Vito, (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics Science Advances 7, eabg6467

de la Mata, Ana, Mateos-Timoneda, Miguel A., Nieto-Miguel, Teresa, Galindo, Sara, López-Paniagua, Marina, Planell, Josep A., Engel, Elisabeth, Calonge, Margarita, (2019). Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells Colloids and Surfaces B: Biointerfaces 177, 121-129

Limbal epithelial stem cells (LESCs) are responsible for the renewal of corneal epithelium. Cultivated limbal epithelial transplantation is the current treatment of choice for restoring the loss or dysfunction of LESCs. To perform this procedure, a substratum is necessary for in vitro culturing of limbal epithelial cells and their subsequent transplantation onto the ocular surface. In this work, we evaluated poly-L/DL-lactic acid 70:30 (PLA) films functionalized with type IV collagen (col IV) as potential in vitro carrier substrata for LESCs. We first demonstrated that PLA-col IV films were biocompatible and suitable for the proliferation of human corneal epithelial cells. Subsequently, limbal epithelial cell suspensions, isolated from human limbal rings, were cultivated using culture medium that did not contain animal components. The cells adhered significantly faster to PLA-col IV films than to tissue culture plastic (TCP). The mRNA expression levels for the LESC specific markers, K15, P63α and ABCG2 were similar or greater (significantly in the case of K15) in limbal epithelial cells cultured on PLA-col IV films than limbal epithelial cells cultured on TCP. The percentage of cells expressing the corneal (K3, K12) and the LESC (P63α, ABCG2) specific markers was similar for both substrata. These results suggest that the PLA-col IV films promoted LESC attachment and helped to maintain their undifferentiated stem cell phenotype. Consequently, these substrata offer an alternative for the transplantation of limbal cells onto the ocular surface.

JTD Keywords: Corneal epithelium, Collagen IV, Limbal stem cells, Polylactic acid, Tissue engineering


Oliveira, V. R., Uriarte, J. J., Falcones, B., Jorba, I., Zin, W. A., Farré, R., Navajas, D., Almendros, I., (2019). Biomechanical response of lung epithelial cells to iron oxide and titanium dioxide nanoparticles Frontiers in Physiology 10, 1047

Increasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary oxidative stress and inflammation. Although changes on cellular mechanics could contribute to pulmonary inflammation, there is no information regarding the effects of Fe2O3 and TiO2 on alveolar epithelial cell biomechanics. The aim was to investigate the NPs-induced biomechanical effects in terms of cell stiffness and traction forces exerted by human alveolar epithelial cells. Cell Young’s modulus (E) measured by atomic force microscopy in alveolar epithelial cells significantly decreased after exposure to Fe2O3 and TiO2 (-28 and -25%, respectively) compared to control conditions. Moreover, both NPs induced a similar reduction in the traction forces exerted by the alveolar epithelial cells in comparison to the control conditions. Accordingly, immunofluorescence images revealed a reduction of actomyosin stress fibers in response to the exposure to NPs. However, no inflammatory response was detected. In conclusion, an acute exposure of epithelial pulmonary cells to Fe2O3 and TiO2 NPs, which was mild since it was non-cytotoxic and did not induce inflammation, modified cell biomechanical properties which could be translated into damage of the epithelial barrier integrity, suggesting that mild environmental inhalation of Fe2O3 and TiO2 NPs could not be innocuous.

JTD Keywords: Actomyosin fibers, Air pollution, Cell biomechanics, Lung epithelium, Nanoparticles


Oliveira, V. R., Uriarte, J. J., Falcones, B., Zin, W. A., Navajas, D., Farré, R., Almendros, I., (2019). Escherichia coli lipopolysaccharide induces alveolar epithelial cell stiffening Journal of Biomechanics 83, 315-318

Introduction: Application of lipopolysaccharide (LPS) is a widely employed model to mimic acute respiratory distress syndrome (ARDS). Available data regarding LPS-induced biomechanical changes on pulmonary epithelial cells are limited only to P. aeruginosa LPS. Considering that LPS from different bacteria could promote a specific mechanical response in epithelial cells, we aim to assess the effect of E. coli LPS, widely employed as a model of ARDS, in the biomechanics of alveolar epithelial cells. Methods: Young’s modulus (E) of alveolar epithelial cells (A549) was measured by atomic force microscopy every 5 min throughout 60 min of experiment after treatment with LPS from E. coli (100 μg/mL). The percentage of cells presenting actin stress fibers (F-actin staining) was also evaluated. Control cells were treated with culture medium and the values obtained were compared with LPS-treated cells for each time-point. Results: Application of LPS induced significant increase in E after 20 min (77%) till 60 min (104%) in comparison to controls. Increase in lung epithelial cell stiffness induced by LPS was associated with a higher number of cells presenting cytoskeletal remodeling. Conclusions: The observed effects of E. coli LPS on alveolar epithelial cells suggest that this widely-used LPS is able to promote a quick formation of actin stress fibers and stiffening cells, thereby facilitating the disruption of the pulmonary epithelial barrier.

JTD Keywords: Acute respiratory distress syndrome model, Alveolar epithelium, Biomechanics, E. coli, Lipopolysaccharide