by Keyword: Stroke
Li, JH, Tiberi, R, Canals, P, Vargas, D, Castaño, O, Molina, M, Tomasello, A, Ribo, M, (2023). Double stent-retriever as the first-line approach in mechanical thrombectomy: a randomized in vitro evaluation Journal Of Neurointerventional Surgery 15, 1224-1228
BackgroundA repeated number of passes during mechanical thrombectomy leads to worse clinical outcomes in acute ischemic stroke. Initial experiences with the simultaneous double stent-retriever (double-SR) technique as the first-line treatment showed promising safety and efficacy results.ObjectiveTo characterize the potential benefits of using the double-SR as first-line technique as compared with the traditional single-SR approach.MethodsThree types of clot analogs (soft, moderately stiff, and stiff) were used to create terminal internal carotid artery (T-ICA=44) and middle cerebral artery (MCA=88) occlusions in an in vitro neurovascular model. Sixty-six cases were randomized into each treatment arm: single-SR or double-SR, in combination with a 0.071" distal aspiration catheter. A total of 132 in vitro thrombectomies were performed. Primary endpoints were the rate of first-pass recanalization (%FPR) and procedural-related distal emboli.ResultsFPR was achieved in 42% of the cases. Overall, double-SR achieved a significantly higher %FPR than single-SR (52% vs 33%, P=0.035). Both techniques showed similar %FPR in T-ICA occlusions (single vs double: 23% vs 27%, P=0.728). Double-SR significantly outperformed single-SR in MCA occlusions (63% vs 38%, P=0.019), most notably in saddle occlusions (64% vs 14%, P=0.011), although no significant differences were found in single-branch occlusions (64% vs 50%, P=0.275). Double-SR reduced the maximal size of the clot fragments migrating distally (Feret diameter=1.08±0.65 mm vs 2.05±1.14 mm, P=0.038).ConclusionsThis randomized in vitro evaluation demonstrates that the front-line double-SR technique is more effective than single-SR in achieving FPR when treating MCA bifurcation occlusions that present saddle thrombus.
JTD Keywords: endovascular treatment, guidelines, health, stroke, technique, thrombectomy, Acute ischemic-stroke, Stroke, Thrombectomy
Li, JH, Tomasello, A, Requena, M, Canals, P, Tiberi, R, Galve, I, Engel, E, Kallmes, DF, Castano, O, Ribo, M, (2023). Trackability of distal access catheters: an in vitro quantitative evaluation of navigation strategies Journal Of Neurointerventional Surgery 15, 498-+
Background In mechanical thrombectomy (MT), distal access catheters (DACs) are tracked through the vascular anatomy to reach the occlusion site. The inability of DACs to reach the occlusion site has been reported as a predictor of unsuccessful recanalization. This study aims to provide insight into how to navigate devices through the vascular anatomy with minimal track forces, since higher forces may imply more risk of vascular injuries. Methods We designed an experimental setup to monitor DAC track forces when navigating through an in vitro anatomical model. Experiments were recorded to study mechanical behaviors such as tension buildup against vessel walls, DAC buckling, and abrupt advancements. A multiple regression analysis was performed to predict track forces from the catheters' design specifications. Results DACs were successfully delivered to the target M1 in 60 of 63 in vitro experiments (95.2%). Compared to navigation with unsupported DAC, the concomitant coaxial use of a microcatheter/microguidewire and microcatheter/stent retriever anchoring significantly reduced the track forces by about 63% and 77%, respectively (p<0.01). The presence of the braid pattern in the reinforcement significantly reduced the track forces regardless of the technique used (p<0.05). Combined coil and braid reinforcement configuration, as compared with coil alone, and a thinner distal wall were predictors of lower track force when navigating with unsupported DAC. Conclusions The use of microcatheter and stent retriever facilitate smooth navigation of DACs through the vascular tortuosity to reach the occlusion site, which in turn improves the reliability of tracking when positioning the DAC closer to the thrombus interface.
JTD Keywords: catheter, navigation, stroke, thrombectomy, Catheter, Navigation, Stroke, Thrombectomy, Vessel wall
Mura, A, Maier, M, Ballester, BR, Costa, JD, Lopez-Luque, J, Gelineau, A, Mandigout, S, Ghatan, PH, Fiorillo, R, Antenucci, F, Coolen, T, Chivite, I, Callen, A, Landais, H, Gomez, OI, Melero, C, Brandi, S, Domenech, M, Daviet, JC, Zucca, R, Verschure, PFMJ, (2022). Bringing rehabilitation home with an e-health platform to treat stroke patients: study protocol of a randomized clinical trial (RGS@home) Trials 23, 518
Background: There is a pressing need for scalable healthcare solutions and a shift in the rehabilitation paradigm from hospitals to homes to tackle the increase in stroke incidence while reducing the practical and economic burden for patients, hospitals, and society. Digital health technologies can contribute to addressing this challenge; however, little is known about their effectiveness in at-home settings. In response, we have designed the RGS@home study to investigate the effectiveness, acceptance, and cost of a deep tech solution called the Rehabilitation Gaming System (RGS). RGS is a cloud-based system for delivering Al-enhanced rehabilitation using virtual reality, motion capture, and wearables that can be used in the hospital and at home. The core principles of the brain theory-based RGS intervention are to deliver rehabilitation exercises in the form of embodied, goal-oriented, and task-specific action.; Methods: The RGS@home study is a randomized longitudinal clinical trial designed to assess whether the combination of the RGS intervention with standard care is superior to standard care alone for the functional recovery of stroke patients at the hospital and at home. The study is conducted in collaboration with hospitals in Spain, Sweden, and France and includes inpatients and outpatients at subacute and chronic stages post-stroke. The intervention duration is 3 months with assessment at baseline and after 3, 6, and 12 months. The impact of RGS is evaluated in terms of quality of life measurements, usability, and acceptance using standardized clinical scales, together with health economic analysis. So far, one-third of the patients expected to participate in the study have been recruited (N = 90, mean age 60, days after stroke >= 30 days). The trial will end in July 2023.; Discussion: We predict an improvement in the patients' recovery, high acceptance, and reduced costs due to a soft landing from the clinic to home rehabilitation. In addition, the data provided will allow us to assess whether the prescription of therapy at home can counteract deterioration and improve quality of life while also identifying new standards for online and remote assessment, diagnostics, and intervention across European hospitals.
JTD Keywords: deep tech, e-health, home treatment, motor recovery, randomized clinical trial, stroke, upper extremities, virtual reality, Deep tech, E-health, Functional recovery, Home treatment, Motor recovery, Randomized clinical trial, Stroke, Upper extremities, Virtual reality, Wearables
Pavlova, EL, Semenov, RV, Pavlova-Deb, MP, Guekht, AB, (2022). Transcranial direct current stimulation of the premotor cortex aimed to improve hand motor function in chronic stroke patients Brain Research 1780, 147790
Objective: To investigate the effects of single-session premotor and primary motor tDCS in chronic stroke patients with relation to possible inter-hemispheric interactions. Methods: Anodal tDCS of either M1 or premotor cortex of the side contralateral to the paretic hand, cathodal tDCS of the premotor cortex of the side ipsilateral to the paretic hand and sham stimulation were performed in 12 chronic stroke patients with mild hand paresis in a balanced cross-over design. The Jebsen-Taylor Hand Function test, evaluating the time required for performance of everyday motor tasks, was employed. Results: The repeated-measure ANOVA with Greenhouse-Geisser correction showed significant influence of the stimulation type (factor SESSION; F(2.6, 28.4) = 47.3, p < 0.001), the test performance time relative to stimulation (during or after tDCS; factor TIME, F(1.0, 11.0) = 234.5, p < 0.001) with higher effect after the stimulation and the interaction SESSION*TIME (F(1.7, 1.2) = 30.5, p < 0.001). All active conditions were effective for the modulation of JTT performance, though the highest effect was observed after anodal tDCS of M1, followed by effects after anodal stimulation of the premotor cortex contralateral to the paretic hand. Based on the correlation patterns, the inhibitory input to M1 from premotor cortex of another hemisphere and an excitatory input from the ipsilesional premotor cortex were suggested. Conclusion: The premotor cortex is a promising candidate area for transcranial non-invasive stimulation of chronic stroke patients. © 2022 The Author(s)
JTD Keywords: areas, contralateral primary motor, dorsal premotor, excitability, jtt, lateral premotor, object manipulation, premotor cortex, recovery, stroke, tdcs, time-course, transcranial direct current stimulation, Jtt, Noninvasive brain-stimulation, Premotor cortex, Stroke, Tdcs, Transcranial direct current stimulation
Ballester, BR, Winstein, C, Schweighofer, N, (2022). Virtuous and Vicious Cycles of Arm Use and Function Post-stroke Frontiers In Neurology 13, 804211
Large doses of movement practice have been shown to restore upper extremities' motor function in a significant subset of individuals post-stroke. However, such large doses are both difficult to implement in the clinic and highly inefficient. In addition, an important reduction in upper extremity function and use is commonly seen following rehabilitation-induced gains, resulting in “rehabilitation in vain”. For those with mild to moderate sensorimotor impairment, the limited spontaneous use of the more affected limb during activities of daily living has been previously proposed to cause a decline of motor function, initiating a vicious cycle of recovery, in which non-use and poor performance reinforce each other. Here, we review computational, experimental, and clinical studies that support the view that if arm use is raised above an effective threshold, one enters a virtuous cycle in which arm use and function can reinforce each other via self-practice in the wild. If not, one enters a vicious cycle of declining arm use and function. In turn, and in line with best practice therapy recommendations, this virtuous/vicious cycle model advocates for a paradigm shift in neurorehabilitation whereby rehabilitation be embedded in activities of daily living such that self-practice with the aid of wearable technology that reminds and motivates can enhance paretic limb use of those who possess adequate residual sensorimotor capacity. Altogether, this model points to a user-centered approach to recovery post-stroke that is tailored to the participant's level of arm use and designed to motivate and engage in self-practice through progressive success in accomplishing meaningful activities in the wild. Copyright © 2022 Ballester, Winstein and Schweighofer.
JTD Keywords: compensatory movement, computational neurorehabilitation, decision-making, individuals, learned non-use, learned nonuse, monkeys, neurorehabilitation, recovery, rehabilitation, stroke, stroke patients, wearable sensors, wrist, Arm movement, Article, Cerebrovascular accident, Clinical decision making, Clinical practice, Clinical study, Compensatory movement, Computational neurorehabilitation, Computer model, Daily life activity, Decision-making, Experimental study, Human, Induced movement therapy, Learned non-use, Musculoskeletal function, Neurorehabilitation, Paresis, Sensorimotor function, Stroke, Stroke rehabilitation, User-centered design, Vicious cycle, Virtuous cycle, Wearable sensors
Ballester, BR, Ward, NS, Brander, F, Maier, M, Kelly, K, Verschure, PFMJ, (2022). Relationship between intensity and recovery in post-stroke rehabilitation: a retrospective analysis Journal Of Neurology Neurosurgery And Psychiatry 93, 226-228
[No abstract available]
JTD Keywords: Hemiplegia, Rehabilitation, Stroke, Stroke recovery
McGill, K, Sackley, C, Godwin, J, Gavaghan, D, Ali, M, Ballester, BR, Brady, MC, (2022). Using the Barthel Index and modified Rankin Scale as Outcome Measures for Stroke Rehabilitation Trials; A Comparison of Minimum Sample Size Requirements Journal Of Stroke & Cerebrovascular Diseases 31, 106229
Underpowered trials risk inaccurate results. Recruitment to stroke rehabilitation randomised controlled trials (RCTs) is often a challenge. Statistical simulations offer an important opportunity to explore the adequacy of sample sizes in the context of specific outcome measures. We aimed to examine and compare the adequacy of stroke rehabilitation RCT sample sizes using the Barthel Index (BI) or modified Rankin Scale (mRS) as primary outcomes.We conducted computer simulations using typical experimental event rates (EER) and control event rates (CER) based on individual participant data (IPD) from stroke rehabilitation RCTs. Event rates are the proportion of participants who experienced clinically relevant improvements in the RCT experimental and control groups. We examined minimum sample size requirements and estimated the number of participants required to achieve a number needed to treat within clinically acceptable boundaries for the BI and mRS.We secured 2350 IPD (18 RCTs). For a 90% chance of statistical accuracy on the BI a rehabilitation RCT would require 273 participants per randomised group. Accurate interpretation of effect sizes would require 1000s of participants per group. Simulations for the mRS were not possible as a clinically relevant improvement was not detected when using this outcome measure.Stroke rehabilitation RCTs with large sample sizes are required for accurate interpretation of effect sizes based on the BI. The mRS lacked sensitivity to detect change and thus may be unsuitable as a primary outcome in stroke rehabilitation trials.Copyright © 2021 Elsevier Inc. All rights reserved.
JTD Keywords:  , barthel index, design, increasing value, modified rankin scale, randomised controlled trials, recruitment, reducing waste, reliability, sample size calculations, simulations, stroke rehabilitation, Adult, Article, Barthel index, Calculation, Computer simulation, Controlled study, Effect size, Female, Human, Human experiment, Major clinical study, Male, Modified rankin scale, Numbers needed to treat, Outcome assessment, Randomised controlled trials, Randomized controlled trial, Randomized controlled-trials, Rankin scale, Recruitment, Rehabilitation, Sample size, Sample size calculations, Simulations, Stroke rehabilitation
Li, JH, Castaño, O, Tomasello, A, Lascuevas, MD, Canals, P, Engel, E, Ribo, M, (2022). Catheter tip distensibility substantially influences the aspiration force of thrombectomy devices Journal Of Neurointerventional Surgery 14, 63-67
BackgroundA direct aspiration first pass thrombectomy (ADAPT) is a fast-growing technique for which a broad catalog of catheters that provide a wide range of aspiration forces can be used. We aimed to characterize different catheters' aspiration performance on stiff clots in an in vitro vascular model. We hypothesized that labeled catheter inner diameter (labeled-ID) is not the only parameter that affects the aspiration force (asp-F) and that thrombus–catheter tip interaction and distensibility also play a major role.MethodsWe designed an experimental setup consisting of a 3D-printed carotid artery immersed in a water deposit. We measured asp-F and distensibility of catheter tips when performing ADAPT on a stiff clot analog larger than catheter labeled-ID. Correlations between asp-F, catheter ID, and tip distensibility were statistically assessed.ResultsExperimental asp-F and catheter labeled-ID were correlated (r=0.9601; P<0.01). The relative difference between experimental and theoretical asp-F (obtained by the product of the tip’s section area by the vacuum pressure) correlated with tip’s distensibility (r=0.9050; P<0.01), evidencing that ADAPT performance is highly influenced by catheter tip shape-adaptability to the clot and that the effective ID (eff-ID) may differ from the labeled-ID specified by manufacturers. Eff-ID showed the highest correlation with experimental asp-F (r=0.9944; P<0.01), confirming that eff-ID rather than labeled-ID should be considered to better estimate the device efficiency.ConclusionsCatheter tip distensibility can induce a significant impact on ADAPT performance when retrieving a stiff clot larger than the device ID. Our findings might contribute to optimizing thrombectomy strategies and the design of novel aspiration catheters.
JTD Keywords: catheter, endovascular thrombectomy, intervention, pressure, stroke, technique, thrombectomy, Acute ischemic-stroke, Catheter, Thrombectomy
dos Santos, FP, Verschure, PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544
Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.
JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex
Ballester, BR, Antenucci, F, Maier, M, Coolen, ACC, Verschure, PFMJ, (2021). Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training Journal Of Neuroengineering And Rehabilitation 18, 186
Introduction: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. Methods: We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients' hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. Results: Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model's performance to estimate FM-UE scores reaches an accuracy of R-2: 0.38 with an error (sigma: 12.8). Next, we evaluate its reliability (r = 0.89 for test-retest), longitudinal external validity (95% true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements (R-2: 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory (R-2: 0.40) and Barthel Index (R-2: 0.35). Conclusions: Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers.
JTD Keywords: interactive feedback, motion classification, motion sensing, multivariate regression, posture monitoring, rehabilitation, stroke, Adult, Aged, Analytic method, Arm movement, Article, Barthel index, Brain hemorrhage, Cerebrovascular accident, Chedoke arm and hand activity inventory, Clinical protocol, Cognitive defect, Computer analysis, Controlled study, Convergent validity, Correlation coefficient, Disease severity, External validity, Female, Fugl meyer assessment for the upper extremity, Functional assessment, Functional status assessment, General health status assessment, Hemiparesis, Human, Interactive feedback, Ischemic stroke, Kinematics, Major clinical study, Male, Mini mental state examination, Motion classification, Motion sensing, Motor analog scale, Movement, Multivariate regression, Muscle function, Posture monitoring, Probability, Recovery, Rehabilitation, Reliability, Retrospective study, Stroke, Stroke patient, Test retest reliability, Therapy, Total goal directed movement, Upper extremities, Upper limb, Upper-limb, Wolf motor function test
Castillo-Escario, Y, Kumru, H, Valls-Solé, J, García-Alen, L, Jané, R, Vidal, J, (2021). Quantitative evaluation of trunk function and the StartReact effect during reaching in patients with cervical and thoracic spinal cord injury Journal Of Neural Engineering 18, 0460d2
Objective. Impaired trunk stability is frequent in spinal cord injury (SCI), but there is a lack of quantitative measures for assessing trunk function. Our objectives were to: (a) evaluate trunk muscle activity and movement patterns during a reaching task in SCI patients, (b) compare the impact of cervical (cSCI) and thoracic (tSCI) injuries in trunk function, and (c) investigate the effects of a startling acoustic stimulus (SAS) in these patients. Approach. Electromyographic (EMG) and smartphone accelerometer data were recorded from 15 cSCI patients, nine tSCI patients, and 24 healthy controls, during a reaching task requiring trunk tilting. We calculated the response time (RespT) until pressing a target button, EMG onset latencies and amplitudes, and trunk tilt, lateral deviation, and other movement features from accelerometry. Statistical analysis was applied to analyze the effects of group (cSCI, tSCI, control) and condition (SAS, non-SAS) in each outcome measure. Main results. SCI patients, especially those with cSCI, presented significantly longer RespT and EMG onset latencies than controls. Moreover, in SCI patients, forward trunk tilt was accompanied by significant lateral deviation. RespT and EMG latencies were remarkably shortened by the SAS (the so-called StartReact effect) in tSCI patients and controls, but not in cSCI patients, who also showed higher variability. Significance. The combination of EMG and smartphone accelerometer data can provide quantitative measures for the assessment of trunk function in SCI. Our results show deficits in postural control and compensatory strategies employed by SCI patients, including delayed responses and higher lateral deviations, possibly to improve sitting balance. This is the first study investigating the StartReact responses in trunk muscles in SCI patients and shows that the SAS significantly accelerates RespT in tSCI, but not in cSCI, suggesting an increased cortical control exerted by these patients.
JTD Keywords: accelerometer, electromyography, impairment, individuals, movements, postural stability, reaction-time, reliability, sitting balance, smartphone, spinal cord injury, startle, startreact, strategies, stroke, trunk, Accelerometer, Electromyography, Sitting balance, Smartphone, Spinal cord injury, Startreact, Trunk
Costa, JD, Ballester, BR, Verschure, PFMJ, (2021). A Rehabilitation Wearable Device to Overcome Post-stroke Learned Non-use. Methodology, Design and Usability Communications In Computer And Information Science 1538, 198-205
After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution and implicitly reducing the expected cost of using the paretic limb, following the notion of reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer-based measure of arm use and its capacity to discriminate different activities that require increasing movement of the arm. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond hospitalization time. © 2021, Springer Nature Switzerland AG.
JTD Keywords: adls, hemiparesis, learned non-use, wearables, Activities of daily living, Adls, Functional loss, Generalisation, Hemiparesis, Learned non-use, Motor impairments, Neurorehabilitation [], Patient experiences, Stroke, Wearable devices, Wearable technology, Wearables
Maier, Martina, Rubio Ballester, Belén, Duff, Armin, Duarte Oller, Esther, Verschure, P., (2019). Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: A systematic meta-analysis Neurorehabilitation and Neural Repair 33, (2), 112-129
Background. Despite the rise of virtual reality (VR)-based interventions in stroke rehabilitation over the past decade, no consensus has been reached on its efficacy. This ostensibly puzzling outcome might not be that surprising given that VR is intrinsically neutral to its use—that is, an intervention is effective because of its ability to mobilize recovery mechanisms, not its technology. As VR systems specifically built for rehabilitation might capitalize better on the advantages of technology to implement neuroscientifically grounded protocols, they might be more effective than those designed for recreational gaming. Objective. We evaluate the efficacy of specific VR (SVR) and nonspecific VR (NSVR) systems for rehabilitating upper-limb function and activity after stroke. Methods. We conducted a systematic search for randomized controlled trials with adult stroke patients to analyze the effect of SVR or NSVR systems versus conventional therapy (CT). Results. We identified 30 studies including 1473 patients. SVR showed a significant impact on body function (standardized mean difference [SMD] = 0.23; 95% CI = 0.10 to 0.36; P = .0007) versus CT, whereas NSVR did not (SMD = 0.16; 95% CI = −0.14 to 0.47; P = .30). This result was replicated in activity measures. Conclusions. Our results suggest that SVR systems are more beneficial than CT for upper-limb recovery, whereas NSVR systems are not. Additionally, we identified 6 principles of neurorehabilitation that are shared across SVR systems and are possibly responsible for their positive effect. These findings may disambiguate the contradictory results found in the current literature.
JTD Keywords: Stroke, Paresis, Virtual reality, Rehabilitation, Occupational therapy, Review
Maier, Martina, Ballester, Belén Rubio, Verschure, P., (2019). Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms Frontiers in Systems Neuroscience 13, 74
What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.
JTD Keywords: Neurorehabilitation, Motor learning, Plasticity, Stroke, Principles
Ballester, B. R., Maier, M., Duff, A., Cameirão, M., Bermúdez, S., Duarte, E., Cuxart, A., Rodríguez, S., San Segundo Mozo, R. M., Verschure, P., (2019). A critical time window for recovery extends beyond one-year post-stroke Journal of neurophysiology Journal of Neurophysiology , 122, (1), 350-357
The impact of rehabilitation on post-stroke motor recovery and its dependency on the patient's chronicity remain unclear. The field has widely accepted the notion of a proportional recovery rule with a "critical window for recovery" within the first 3-6 mo poststroke. This hypothesis justifies the general cessation of physical therapy at chronic stages. However, the limits of this critical window have, so far, been poorly defined. In this analysis, we address this question, and we further explore the temporal structure of motor recovery using individual patient data from a homogeneous sample of 219 individuals with mild to moderate upper-limb hemiparesis. We observed that improvement in body function and structure was possible even at late chronic stages. A bootstrapping analysis revealed a gradient of enhanced sensitivity to treatment that extended beyond 12 mo poststroke. Clinical guidelines for rehabilitation should be revised in the context of this temporal structure. NEW & NOTEWORTHY Previous studies in humans suggest that there is a 3- to 6-mo "critical window" of heightened neuroplasticity poststroke. We analyze the temporal structure of recovery in patients with hemiparesis and uncover a precise gradient of enhanced sensitivity to treatment that expands far beyond the limits of the so-called critical window. These findings highlight the need for providing therapy to patients at the chronic and late chronic stages.
JTD Keywords: Motor recovery, Neuroplasticity, Neurorehabilitation, Stroke recovery, Virtual reality
López-Carral, Héctor, Santos-Pata, D., Zucca, R., Verschure, P., (2019). How you type is what you type: Keystroke dynamics correlate with affective content ACII 2019 8th International Conference on Affective Computing and Intelligent Interaction , IEEE (Cabride, UK) , 1-5
Estimating the affective state of a user during a computer task traditionally relies on either subjective reports or analysis of physiological signals, facial expressions, and other measures. These methods have known limitations, can be intrusive and may require specialized equipment. An alternative would be employing a ubiquitous device of everyday use such as a standard keyboard. Here we investigate if we can infer the emotional state of a user by analyzing their typing patterns. To test this hypothesis, we asked 400 participants to caption a set of emotionally charged images taken from a standard database with known ratings of arousal and valence. We computed different keystroke pattern dynamics, including keystroke duration (dwell time) and latency (flight time). By computing the mean value of all of these features for each image, we found a statistically significant negative correlation between dwell times and valence, and between flight times and arousal. These results highlight the potential of using keystroke dynamics to estimate the affective state of a user in a non-obtrusive way and without the need for specialized devices.
JTD Keywords: Feature extraction, Correlation, Keyboards, Task analysis, Statistical analysis, Affective computing, Standards, Keystroke, Keyboard, Typing, Arousal, Valence, Affect
Ballester, Rubio Belén, Nirme, Jens, Camacho, Irene, Duarte, Esther, Rodríguez, Susana, Cuxart, Ampar, Duff, Armin, Verschure, F. M. J. Paul, (2017). Domiciliary VR-based therapy for functional recovery and cortical reorganization: Randomized controlled trial in participants at the chronic stage post stroke JMIR Serious Games , 5, (3), e15
Background: Most stroke survivors continue to experience motor impairments even after hospital discharge. Virtual reality-based techniques have shown potential for rehabilitative training of these motor impairments. Here we assess the impact of at-home VR-based motor training on functional motor recovery, corticospinal excitability and cortical reorganization. Objective: The aim of this study was to identify the effects of home-based VR-based motor rehabilitation on (1) cortical reorganization, (2) corticospinal tract, and (3) functional recovery after stroke in comparison to home-based occupational therapy. Methods: We conducted a parallel-group, controlled trial to compare the effectiveness of domiciliary VR-based therapy with occupational therapy in inducing motor recovery of the upper extremities. A total of 35 participants with chronic stroke underwent 3 weeks of home-based treatment. A group of subjects was trained using a VR-based system for motor rehabilitation, while the control group followed a conventional therapy. Motor function was evaluated at baseline, after the intervention, and at 12-weeks follow-up. In a subgroup of subjects, we used Navigated Brain Stimulation (NBS) procedures to measure the effect of the interventions on corticospinal excitability and cortical reorganization. Results: Results from the system?s recordings and clinical evaluation showed significantly greater functional recovery for the experimental group when compared with the control group (1.53, SD 2.4 in Chedoke Arm and Hand Activity Inventory). However, functional improvements did not reach clinical significance. After the therapy, physiological measures obtained from a subgroup of subjects revealed an increased corticospinal excitability for distal muscles driven by the pathological hemisphere, that is, abductor pollicis brevis. We also observed a displacement of the centroid of the cortical map for each tested muscle in the damaged hemisphere, which strongly correlated with improvements in clinical scales. Conclusions: These findings suggest that, in chronic stages, remote delivery of customized VR-based motor training promotes functional gains that are accompanied by neuroplastic changes. Trial Registration: International Standard Randomized Controlled Trial Number NCT02699398 (Archived by ClinicalTrials.gov at https://clinicaltrials.gov/ct2/show/NCT02699398?term=NCT02699398&rank=1)
JTD Keywords: Stroke, Movement disorder, Recovery of function, neuroplasticity, Transcranial magnetic stimulation, Physical therapy, Hemiparesis, Computer applications software
Urra, O., Casals, A., Jané, R., (2014). Evaluating spatial characteristics of upper-limb movements from EMG signals IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1795-1798
Stroke is a major cause of disability, usually causing hemiplegic damage on the motor abilities of the patient. Stroke rehabilitation seeks restoring normal motion on the affected limb. However, normality’ of movements is usually assessed by clinical and functional tests, without considering how the motor system responds to therapy. We hypothesized that electromyographic (EMG) recordings could provide useful information for evaluating the outcome of rehabilitation from a neuromuscular perspective. Four healthy subjects were asked to perform 14 different functional movements simulating the action of reaching over a table. Each movement was defined according to the starting and target positions that the subject had to connect using linear trajectories. Bipolar recordings of EMG signals were taken from biceps and triceps muscles, and spectral and temporal characteristics were extracted for each movement. Using pattern recognition techniques we found that only two EMG channels were sufficient to accurately determine the spatial characteristics of motor activity: movement direction, length and execution zone. Our results suggest that muscles may fire in a patterned way depending on the specific characteristics of the movement and that EMG signals may codify such detailed information. These findings may be of great value to quantitatively assess post-stroke rehabilitation and to compare the neuromuscular activity of the affected and unaffected limbs, from a physiological perspective. Furthermore, disturbed movements could be characterized in terms of the muscle function to identify, which is the spatial characteristic that fails, e.g. movement direction, and guide personalized rehabilitation to enhance the training of such characteristic.
JTD Keywords: EMG, Movement spatial characteristics, Pattern recognition, Stroke rehabilitation, Upper-limb