by Keyword: cancers
Alcaraz J, Ikemori R, Llorente A, Díaz-valdivia N, Reguart N, Vizoso M, (2021). Epigenetic reprogramming of tumor-associated fibroblasts in lung cancer: Therapeutic opportunities Cancers 13, 3782
Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
JTD Keywords: cancer-associated fibroblasts, desmoplasia, dna methylation, epigenetics, expression, genomic dna, lung cancer, mechanical memory, myofibroblast differentiation, pulmonary fibroblasts, smoking, stromal fibroblasts, tgf-?, tgf-beta, tgf-β, transforming growth-factor-beta-1, tumor stroma, Cancer-associated fibroblasts, Carcinoma-associated fibroblasts, Desmoplasia, Epigenetics, Lung cancer, Smoking, Tgf-β, Tumor stroma
Blanco-Fernandez B, Gaspar VM, Engel E, Mano JF, (2021). Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models Advanced Science 8, 2003129
© 2020 The Authors. Advanced Science published by Wiley-VCH GmbH The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
JTD Keywords: 3d in vitro models, cancers, hydrogels, peptides, 3d in vitro models, Cancers, Hydrogels, Peptides, Proteins
Blanco-Fernandez B, Cano-Torres I, Garrido C, Rubi-Sans G, Sanchez-Cid L, Guerra-Rebollo M, Rubio N, Blanco J, Perez-Amodio S, Mateos-Timoneda MA, Engel E, (2021). Engineered microtissues for the bystander therapy against cancer Materials Science & Engineering C-Materials For Biological Applications 121, 111854
© 2021 Elsevier B.V. Thymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.
JTD Keywords: adipose mesenchymal stem cells, bioluminescence, bystander therapy, cancer, Adipose mesenchymal stem cells, Bioluminescence, Bystander therapy, Cancer, Self-assembled cell-based microtissues
Almendros, I., Montserrat, J. M., Torres, M., Bonsignore, M. R., Chimenti, L., Navajas, D., Farre, R., (2012). Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea
Sleep Medicine , 13, (10), 1254-1260
Background: Intermittent hypoxia and obesity which are two pathological conditions commonly found in patients with obstructive sleep apnea (OSA), potentially enhance cancer progression. Objective: To investigate whether obesity and/or intermittent hypoxia (IH) mimicking OSA affect tumor growth. Methods: A subcutaneous melanoma was induced in 40 mice [22 obese (40-45 g) and 18 lean (20-25 g)] by injecting 10(6) B16F10 cells in the flank. Nineteen mice (10 obese/9 lean) were subjected to IH (6 h/day for 17 days). A group of 21 mice (12 obese/9 lean) were kept under normoxia. At day 17, tumors were excised, weighed and processed to quantify necrosis and endothelial expression of vascular endothelial growth factor (VEGF) and CD-31. VEGF in plasma was also assessed. Results: In lean animals, IH enhanced tumor growth from 0.81 +/- 0.17 to 1.95 +/- 0.32 g. In obese animals, a similar increase in tumor growth (1.94 +/- 0.18 g) was observed under normoxia, while adding IH had no further effect (1.69 +/- 0.23 g). IH only promoted an increase in tumoral necrosis in lean animals. However, obesity under normoxic conditions increased necrosis, VEGF and CD-31 expression in tumoral tissue. Plasma VEGF strongly correlated with tumor weight (rho = 0.76, p < 0.001) in the whole sample; it increased in lean IH-treated animals from 66.40 +/- 3.47 to 108.37 +/- 9.48 pg/mL, p < 0.001), while the high baseline value in obese mice (106.90 +/- 4.32 pg/mL) was unaffected by IH. Conclusions: Obesity and IH increased tumor growth, but did not appear to exert any synergistic effects. Circulating VEGF appeared as a crucial mediator of tumor growth in both situations.
JTD Keywords: Intermittent hypoxia, Obesity, Cancer, Sleep apnea, Animal model